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Foreword

Through the last decades of the twentieth century and into the twenty-first, data was
largely a medium for bottom-line accounting: making sure that the books were bal‐
anced, the rules were followed, and the right numbers could be rolled up for execu‐
tive decision-making. It was an era focused on a select group of IT staff engineering
the “golden master” of organizational data; an era in which mantras like “garbage in,
garbage out” captured the attitude that only carefully engineered data was useful.

Attitudes toward data have changed radically in the past decade, as new people, pro‐
cesses, and technologies have come forward to define the hallmarks of a data-driven
organization. In this context, data is a medium for top-line value generation, provid‐
ing evidence and content for the design of new products, new processes, and ever‐
more efficient operation. Today’s data-driven organizations have analysts working
broadly across departments to find methods to use data creatively. It is an era in
which new mantras like “extracting signal from the noise” capture a different attitude
of agile experimentation and exploitation of large, diverse sources of data.

Of course, accounting still needs to get done in the twenty-first century, and the need
remains to curate select datasets. But the data sources and processes for accountancy
are relatively small and slow to change. The data that drives creative and exploratory
analyses represents an (exponentially!) growing fraction of the data in most organiza‐
tions, driving widespread rethinking of processes for data and computing—including
the way that IT organizations approach their traditional tasks.

The phrase data wrangling, born in the modern context of agile analytics, is meant to
describe the lion’s share of the time people spend working with data. There is a com‐
mon misperception that data analysis is mostly a process of running statistical algo‐
rithms on high-performance data engines. In practice, this is just the final step of a
longer and more complex process; 50 to 80 percent of an analyst’s time is spent wran‐
gling data to get it to the point at which this kind of analysis is possible. Not only does
data wrangling consume most of an analyst’s workday, it also represents much of the
analyst’s professional process: it captures activities like understanding what data is
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available; choosing what data to use and at what level of detail; understanding how to
meaningfully combine multiple sources of data; and deciding how to distill the results
to a size and shape that can drive downstream analysis. These activities represent the
hard work that goes into both traditional data “curation” and modern data analysis.
And in the context of agile analytics, these activities also capture the creative and sci‐
entific intuition of the analyst, which can dictate different decisions for each use case
and data source.

We have been working on these issues with data-centric folks of various stripes—
from the IT professionals who fuel data infrastructure in large organizations, to pro‐
fessional data analysts, to data-savvy “enthusiasts” in roles from marketing to journal‐
ism to science and social causes. Much is changing across the board here. This book
is our effort to wrangle the lessons we have learned in this context into a coherent
overview, with a specific focus on the more recent and quickly growing agile analytic
processes in data-driven organizations. Hopefully, some of these lessons will help to
clarify the importance—and yes, the satisfaction—of data wrangling done well.
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CHAPTER 1

Introduction

Let’s begin with the most important question: why should you read this book? The
answer is simple: you want more value from your data. To put a little more meat on
that statement, our objective in writing this book is to help the variety of people who
manage the analysis or application of data in their organizations. The data might or
might not be “yours,” in the strict sense of ownership. But the pains in extracting
value from this data are.

We’re focused on two kinds of readers. First are people who manage the analysis and
application of data indirectly—the managers of teams or directors of data projects.
Second are people who work with data directly—the analysts, engineers, architects,
statisticians, and scientists.

If you’re reading this book, you’re interested in extracting value from data. We can
categorize this value into two types along a temporal dimension: near-term value and
long-term value. In the near term, you likely have a sizable list of questions that you
want to answer using your data. Some of these questions might be vague; for example,
“Are people really shifting toward interacting with us through their mobile devices?”
Other questions might be more specific: “When will our customers’ interactions pri‐
marily originate from mobile devices instead of from desktops or laptops?”

What is stopping you from answering these questions? The most common answer we
hear is “time.” You know the questions, you know how to answer them, but you just
don’t have enough hours in the day to wrangle your data into the right form.

Beyond the list of known questions related to the near-term value of your data is the
optimism that your data has greater potential long-term value. Can you use it to fore‐
cast important seasonal changes? What about risks in your supply chain due to
weather or geopolitical shifts? Can you understand how the move to mobile is affect‐
ing your customers’ purchasing patterns? Organizations generally hire data scientists
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to take on these longer-term, exploratory analyses. But even if you have the requisite
skills to tackle these kinds of analyses, you might still struggle to be allocated suffi‐
cient time and resources. After all, exploratory analytics projects can take months,
and often contain a nontrivial risk of producing primarily negative or ambiguous
results.

As we’ve seen, the primary impediment to realizing both the short-term and long-
term value of your data is time: your limited time and your organization’s limited
time. In this book, we describe how improving your data wrangling efforts can create
the time required to get more near-term and long-term value from your data. In
Chapters 1-3, we describe a workflow framework that links activities focused on both
kinds of value, and explain how data wrangling factors into those activities and into
the overall workflow framework. We introduce the basic building blocks for a data
wrangling project: data flow, data wrangling activities, roles, and responsibilities.
These are all elements that you will want to consider, at a high level, when embarking
on a project that involves data wrangling. Our goal is to provide some helpful guid‐
ance and tips on how to coordinate your data wrangling efforts, both across multiple
projects by making sure your wrangling efforts are constructive as opposed to redun‐
dant or conflicting, and within a single project by taking advantage of some standard
language and operations to increase productivity and consistency.

There’s more to effective data wrangling than just clearly defined workflows and pro‐
cesses; to most effectively wrangle your data, you should also understand which
transformation actions constitute data wrangling, and, most important, how you can
use those transformations to produce the best datasets for your analytic activities.

Those nitty-gritty transformations constitute our discussion in Chapters 4-7. You can
think of those chapters as a rough “how-to” guide for data wrangling. That said, we
do not intend this book to provide a comprehensive tutorial on all possible data
wrangling methods. Instead, we want to give you a collection of techniques that you
can use when moving through the stages of the data workflow framework.

As we introduce each of the key transformation and profiling activities that comprise
data wrangling, we will walk through a theoretical data project involving a publicly
available dataset containing US campaign finance information. You can walk through
the project along with us in your data wrangling tool of choice.

Finally, we end by discussing roles and responsibilities in a data wrangling project in
Chapter 8, and exploring a selection of data wrangling tools in Chapter 9.

Throughout the book, we ground our discussion in example data, transformations of
that data, and various visual and statistical views of that data. Along those lines, we
open with a story about Facebook.
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1 https://s21.q4cdn.com/399680738/files/doc_financials/annual_reports/2015-Annual-Report.pdf
2 https://medium.com/swlh/diligence-at-social-capital-part-1-accounting-for-user-

growth-4a8a449fddfc#.w7lptg3n4
3 https://blog.kissmetrics.com/alex-schultz-growth/

Magic Thresholds, PYMK, and User Growth at Facebook
Growth is about tapping and delivering value to the yet unserved part of your market.
Facebook stands as a quintessential example of how to drive growth. Toward the end
of 2015, Facebook reported more than one billion daily active users with a year-over-
year growth around 17 percent.1 There are, of course, many factors that have contrib‐
uted to this growth. We’ll focus here on a series of data-driven insights that armed
Facebook with strategies to deliver robust growth, year over year over year.

Growth is ultimately about increasing the number of actively engaged users and cus‐
tomers. It follows a simple equation:2

active users = new users + returning users + resurrected users
A critical aspect of growth is bringing new users and customers to your product or
service. But just as critical is delivering value to new users so that they stay engaged.
Ideally, users are “returning” (i.e., active from one period to the next). However,
depending on how you are tracking engagement, you might see blips of inactivity fol‐
lowed by reengagement (placing these users in the “resurrected” group in the afore‐
mentioned equation). We’ll focus on this second critical aspect of growth—delivering
value to new users quickly so that they are motivated to stay engaged.

As Alex Schultz, vice president of growth at Facebook, points out, the primary value
for Facebook users revolves around connecting people to the content from their
friends.3 Obviously, for this to work, users need friends on Facebook. But is this the
only thing that matters—any content from any friend? Common sense would tell you
that this can’t be true, and that people engage with some content more than other
content. So here we have a set of near-term questions to answer:

• How many friends does a new Facebook user need to be X-percent likely to
return as a user in 30 days? In 60 days? In 180 days?

• For new users, what characteristics of their friends stand out to differentiate
between new users who churn (leave the platform and don’t come back) versus
those who remain active?

• Do the preceding findings change by user cohort (groups of users that initially
joined Facebook at around the same time)?

Answering questions like these is the purview of the Growth and Analytics team at
Facebook. Interestingly, the team found a magic threshold that captured a key predic‐
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tor of long-term user engagement: new users should connect to 10 friends within 14
days. Magic thresholds have two key characteristics: first, they should correspond to a
concise Key Performance Indicator (KPI) target that predicts (and if you are lucky,
drives) the impact you want; and second, they should be actionable. KPI targets are
standard across industries and departments, but what sets a magic threshold apart is
that it exposes the core dynamic of the system and provides a lever for achieving a
desired outcome. In the case of Facebook, connecting to friends quickly is a critical
driver of value for new users, and if Facebook can find ways to reach that threshold
for more new users, more new users should stay engaged over the long term.

This magic threshold has the advantage of encoding the core value proposition of
Facebook: users connecting to their friends. It also has the advantage of coordinating
a number of product decisions to help satisfy this threshold for as many new users as
possible.

So, how does Facebook find friends for new users? There are simple, manual mecha‐
nisms that allow new users to import their email contact lists (which Facebook then
triangulates with its known list of users). This provides short-term value. Facebook
also utilizes more sophisticated mechanisms to link users to friends. We consider
these mechanisms to fall into the realm of long-term value, in part because the depth
of analyses and experimentation that are required to robustly expose this value take
months to years. But more importantly, these in-depth analyses give rise to data-
driven services that automatically perform the desired operations.

In Facebook’s case, one of the core systems used to drive growth, by helping new
users connect to friends within Facebook, is known as PYMK, or People You May
Know. PYMK is a recommender system, not unlike Amazon’s product recommenda‐
tion system or Netflix’s movie/show recommendation system. It employs a well-
known and often-used user experience rule: recognition is better than recall. In other
words, it’s easier and more enjoyable for users to say “yes” or “no” to a series of sug‐
gestions than it is for them to generate the content of the suggestions through search
or a menu-driven builder experience.

PYMK uses a number of features about the new users and, more important, about the
first few friends to whom they have connected. In its most basic form, you can think
of PYMK as collecting all the friends of a user’s friends to whom they are not cur‐
rently connected. Then, based on metrics like the number of mutual friends, age sim‐
ilarity, education similarity, and so on, it ranks this list and presents it back to the user
as recommendations.

So, with a little bootstrapping from an important contact list or a few manual friend
searches, new users on Facebook begin receiving recommendations on who to con‐
nect with. The PYMK system that enables these connections has been critical to Face‐
book’s continuous growth.

4 | Chapter 1: Introduction



But the story becomes even more interesting. After some long-running analyses and
experimentation, Facebook found that a more effective use of PYMK for user growth
was not to focus on recommendations for new users (because bootstrapping is diffi‐
cult and the early recommendations can come with low-confidence scores), but
rather to focus on recommendations to heavy, long-time users of Facebook with vast
and diverse connections. Specifically, the key is to recommend new users to the heavy
Facebook users. This primes a new user with all sorts of interesting content and the
friend network of the heavy user can provide better estimates on friend recommenda‐
tions directed to the new user.

Although certainly unique in many ways, Facebook’s use of data stands as a repeatable
process that many other organizations can follow. Starting with a clear motivation—
driving user growth—a number of explicit, near-term questions can provide critical
insights to improve the business. Over the long term, these insights can blossom into
data services that automate and optimize the earlier insights for deeper and addi‐
tional value.

In Chapter 2, we describe our workflow framework that links near-term and long-
term value from data with the variety of activities involved in working with data.

Magic Thresholds, PYMK, and User Growth at Facebook | 5





CHAPTER 2

A Data Workflow Framework

In this chapter, we present a framework for working with data. Our goal is to cover
the most common sequences of actions that people take as they move through the
process of accessing, transforming, and using their data. We’ll begin at the end of this
process, and discuss the value you will get from your data.

In the introduction, we talked about near-term and long-term value. Another dimen‐
sion of value to consider is how that value will be delivered into your organization.
Will value be delivered directly, through systems that can take automated actions
based on data as it is processed? Or will value be delivered indirectly, by empowering
people in your organization to take a different course of action than they otherwise
would have?

Indirect value
Data provides value to your organization by influencing people’s decisions or
inspiring changes in processes. Example: risk modeling in the insurance industry.

Direct value
Data provides value to your organization by feeding automated systems. Exam‐
ple: Netflix’s recommendation system.

Indirect value from data has a long tradition. Entire professions are built on it:
accounting, risk modeling in insurance, experimental design in medical research, and
intelligence analytics. On a smaller scale, you might have used data to generate
reports or interactive visualizations. These reports and visualizations both use data to
deliver indirect value. How? When others view your report or visualization, they
incorporate the presented information into their understanding of the world and
then use their updated understanding to improve their actions. In other words, the
data shown in your reports and visualizations indirectly influences other people’s
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decisions. Most of the near-term, known potential value in your data will be delivered
indirectly.

Direct value from data involves handing decisions to data-driven systems for speed,
accuracy, or customization. The most common example of this involves automatic
delivery and routing of resources. In the world of high-frequency trading and
modern finance, this resource is primarily money. In some industries, like consumer
packaged goods (think Walmart or Amazon), physical goods are routed automati‐
cally. A close cousin to routing physical goods is routing virtual ones: digital media
companies like Netflix and Comcast use automated pipelines to optimize the delivery
of digital content to their customers. At a smaller scale, systems like antilock brakes in
cars use data from sensors to route energy to different wheels. Modern testing sys‐
tems, like the GRE graduate school entrance exam, now dynamically sequence ques‐
tions based on the tester’s evolving performance. In all of these examples, a significant
number of operational decisions are directly controlled by data-driven systems
without any human input.

How Data Flows During and Across Projects
Deriving indirect, human-mediated value from your data is a prerequisite to deriving
direct, automated value. At the outset, human oversight is required to discover what
is “in” your data and to assess whether the quality of your data is sufficiently high to
use it in direct and automated ways. You can’t send data blindly into an automated
system and expect valuable results. Reports must be authored and digested to under‐
stand the wider potential of your data. As that wider potential comes into focus, auto‐
mated systems can be designed to use the data directly.

This is the natural progression of data projects: from near-term answering of known
questions, to longer-term analyses that assess the core quality and potential applica‐
tions of a dataset, and finally to production systems that use data in an automated
way. Underlying this progression is the movement of data through three main data
stages: raw, refined, and production. Table 2-1 provides an overview of this progres‐
sion. For each stage, we list the primary objectives.

Table 2-1. Data moves through stages

 Data Stage
 Raw Refined Production
Primary
Objectives

• Ingest data

• Data discovery and
metadata creation

• Create canonical data for
widespread consumption

• Conduct analyses, modeling, and
forecasting

• Create production-quality data

• Build regular reporting and
automated data products/
services

8 | Chapter 2: A Data Workflow Framework
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In the raw stage, the primary goal is to discover the data. When examining raw data,
you ask questions aimed at understanding what your data looks like. For example:

• What kinds of records are in the data?
• How are the record fields encoded?
• How does the data relate to your organization, to the kinds of operations you

have, and to the other data you are already using?

Armed with an understanding of the data, you can then refine the data for deeper
exploration by removing unusable parts of the data, reshaping poorly formatted ele‐
ments, and establishing relationships between multiple datasets. Assessing potential
data quality issues is also frequently a concern during the refined stage, because qual‐
ity issues might negatively affect any automated use of the data downstream.

Finally, after you understand the data’s quality and potential applications in automa‐
ted systems, you can move the data to the production stage. At this point,
production-quality data can feed automated products and services, or enter previ‐
ously established pipelines that drive regular reporting and analytics activities.

A minority of data projects will end in the raw or production stages. The majority will
end in the refined stage. Projects ending in the refined stage will add indirect value by
delivering insights and models that drive better decisions. In some cases, these
projects might last multiple years. Google’s Project Oxygen is a great example of a
project that ended in the refined stage.1 Realizing that managing people is a critical
skill for a successful organization, Google kicked off a multiyear study to assess the
characteristics of a good manager and then test how effective they could be at teach‐
ing those characteristics. The results of the study indireclty influenced employee
behavior, but the study data itself was not incorporated into a production pipeline.

The hand-off between IT shared services organizations and lines of business tradi‐
tionally occurs in the refined stage. In such an environment, IT is responsible for
Extract-Transform-Load (ETL) operations. ETL moves data through the three data
stages in a centrally controlled manner. Lines of business own the data analysis pro‐
cess, including everything from reporting and ad hoc research tasks, to advanced
modeling and forecasting, to data-driven operational changes. This division of con‐
cerns and responsibilities has two intended benefits: basic data governance due to
centralized data processing, and efficiency gains due to IT engineers reusing broadly
useful data transformations.

However, in practice, the perceived benefits of centrally transforming data are often
eclipsed by the reality of organizational inefficiencies and bottlenecks. Most of these
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bottlenecks arise from line-of-business analysts being dependent upon IT. In the age
of agile analytics and data-driven services, there is increasing pressure to speed up the
extraction of value from your data. Unsurprisingly, the best plan of attack involves
identifying and removing bottlenecks.

In our experience, there are two primary bottlenecks. The first bottleneck is the time
it takes to wrangle your data. Even when you start from refined data, there are often
nontrivial transformations required to prepare your data for analysis. These transfor‐
mations can include removing unnecessary records, joining in additional informa‐
tion, aggregating data, or pivoting datasets. We will discuss each of these common
transformation actions in more detail in later chapters.

The second bottleneck is the simple capacity mismatch that arises when a large pool
of analysts relies on a small pool of IT professionals to prepare “refined” data for
them. Removing this bottleneck is more of an organizational challenge than anything
else, and it involves expanding the range of users who have access to raw data and
providing them with the requisite training and skills.

To help motivate these organizational changes, let’s step back and consider the gross
mechanics of successfully using data. The most valuable uses of your data will be pro‐
duction uses that take the form of automated reports or data-driven services and
products. But every production use of your data depends on hundreds or even thou‐
sands of exploratory, ad hoc analyses. In other words, there is a funnel of effort lead‐
ing to direct, production value that begins with exploratory analytics. And, as with
any funnel, your conversation rate will not be 100 percent. You’ll need as many people
as possible exploring your data and deriving insights in order to discover a relatively
small number of valuable applications of your data.

As Figure 2-1 demonstrates, a large number of raw data sources and exploratory anal‐
yses are required to produce a single valuable application of your data.

Figure 2-1. Data value funnel

When it comes to delivering production value from your data, there are two critical
points to consider. First, data can produce insights that are not useful to you and your
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business. These insights might not be actionable, or their potential impact might be
too small to warrant a change in existing processes. A good strategy for mitigating
this risk is to empower the people who know your business priorities to explore your
data. Second, your exploratory analytics efforts should be as efficient as possible. This
brings us back to data wrangling. The faster you can wrangle data, the more explora‐
tions of your data you can conduct, and the more analyses you will be able to move
into production. Ultimately, implementing an effective data wrangling workflow can
enable more business analysts to explore a larger quantity of data at a faster pace.

Connecting Analytic Actions to Data Movement: A Holistic
Workflow Framework for Data Projects
We began this chapter with a discussion of the direct and indirect value delivered by
data projects.

In this section, we expand our discussion of data stages into a complete framework
that captures the basic analytic actions involved in most data projects. Figure 2-2
illustrates the overall framework and will serve as our map through the rest of the
book.

As Figure 2-2 illustrates, data moves through stages, from raw to refined to produc‐
tion. Each stage has a small set of primary actions. The actions come in two types: in
the top three boxes in Figure 2-2 are actions whose results are the data itself, and in
the bottom six boxes are actions whose results are derived from or built on top of the
data inferences (e.g., insights, reports, products, or services). For simplicity, the con‐
necting links between actions in Figure 2-2 are drawn in one direction. However, real
data projects will often loop back through actions, iterating toward better results.

Figure 2-2. A holistic workflow framework for data projects

Of course, many individuals and organizations will customize the steps in this frame‐
work to fit their specific needs. Although we describe each possible action in our
framework, not every data project will involve all of these actions. You might decide
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to define variants of each action that are tailored to specific customers or business
objectives. You might also decide to create multiple locations for refined data and
multiple locations for production data. We have seen this frequently at organizations
where data security is important, and different business units are not allowed to
access each other’s data. However, most organizations that we have worked with fol‐
low the uncustomized version of this framework.

In the rest of this chapter, we’ll discuss the actions in Figure 2-2. The discussion will
move through the three data stages in order.

Raw Data Stage Actions: Ingest Data and Create Metadata
There are three primary actions in the raw data stage: ingestion of data, creation of
generic metadata, and creation of propriety metadata. We can separate these actions
into two groups based on their output, as shown in Figure 2-3. One group is focused
on outputting data—the two ingestion actions. The second group is focused on out‐
putting insights and information derived from the data—the metadata creation
actions.

Figure 2-3. Primary action and output actions in the raw data stage

Ingesting Known and Unknown Data
The process of ingesting data can vary widely in its complexity. At the less complex
end of the spectrum, many people receive their data as files via channels like email,
shared network folders, or FTP websites. At the more complex end of the spectrum,
modern open source tools like Sqoop, Flume, and Kafka enable more granular and
real-time transferring of data, though at the cost of requiring nontrivial software
engineering to set up and maintain. Somewhere in the middle of this spectrum are
proprietary platforms like Alteryx, Talend, and Informatica Cloud that support a
variety of data transfer and ingestion functionality, with an eye toward easing of con‐
figuration and maintenance for nonengineers.
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In traditional enterprise data warehouses, the ingestion process involves some initial
data transformation operations. These transformations are primarily aimed at map‐
ping inbound elements to those elements’ standard representations in the data ware‐
house. For example, you might be ingesting a comma-separated values (CSV) file and
need each field in that file to correspond to a particular column in a relational data
warehouse. After it is transformed to match the syntax rules defined by the ware‐
house, the data is stored in predefined locations. Often this involves appending newly
arrived data to related prior data. In some cases, appends can be simple, literally just
adding new records at the “end” of the dataset. In other cases, when the incoming
data contains edits to prior data as well as new data, the append operation becomes
more complicated. These scenarios often require you to ingest new data into a sepa‐
rate location, where more complex merging rules can be applied during the refined
data stage.

Some modern NoSQL databases like MongoDB or Cassandra support less-rigid syn‐
tax constraints on incoming data while still supporting many of the classic data access
controls of more traditional warehouses. Further along the spectrum (toward relaxed
constraints on incoming data) are basic storage infrastructures like HDFS and Ama‐
zon S3 buckets. For most users, S3 and HDFS look and act like regular filesystems.
There are folders and files. You can add to, modify, and move them around. And, if
necessary, you can control access on a per-file, per-user basis.

The primary benefit of modern distributed filesystems like HDFS and S3 is that data
ingestion can be as simple as copying files or storing a stream of data into one or
more files. In this environment, the work to make this data usable and accessible is
often deferred until the data is transformed and moved to the refined data stage. This
style of data ingestion is often referred to as schema-on-read. In schema-on-read
ingestion, you do not need to construct or enforce a usable data structure until you
need to use the data. Traditional data warehouses, in contrast, require schema-on-
write, in which the data must adhere to certain structural and syntactic constraints in
order to be ingested.

In other words, the two ends of the ingestion complexity spectrum differ based on
when the initial enforcement of data structure happens. However, it is important to
note that along this entire spectrum of ingestion infrastructures, you will still require
a separate refined data stage. This is because refined data has been further wrangled
to align with foreseeable analyses.

Let’s consider an example data ingestion use case. It is common practice for consumer
packaged goods (CPG) retailers (e.g., Walmart and Target) and manufacturers (e.g.,
Pepsico and General Mills) to share data about their supply chains. This data enables
better forecasting, helping both sides to better manage inventory. Depending on the
size of the companies, data might be shared on a daily, weekly, or monthly basis. The
ingestion complexity comes from the many-to-many partnerships in this ecosystem:
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retailers sell products from many manufacturers, and manufacturers sell products to
many retailers. Each of these companies produces data in different formats and con‐
forms to different syntactic conventions. For example, each company might refer to
products by using their own product IDs or product descriptions. Or some compa‐
nies might report their data at case or bundle levels instead of the individual units
that an end consumer would purchase. Retailers with strong weekly patterns (e.g.,
much higher sales activity on weekends versus weekdays) might report their overall
sales activity on a weekly basis instead of a monthly basis. Even retailers that report
their data at the same frequency might define the beginning and ending of each
period differently. Further complexity arises in retailer sales data when consumers
return purchased goods. Return transactions require amendments to previously
shared sales data, often going back multiple weeks.

The ingestion processes for these CPG companies can range from simple file trans‐
fers, which wait for the refined data stage to tackle the potentially complex wrangling
tasks required to sort out the aforementioned difficulties, to more engineered ETL
processes that fix some of these difficulties as the data is ingested. In either case, both
retailers and manufacturers are interested in forecasting future sales. Because these
forecasts are regularly refreshed, and because the historical sales data on which they
are based can and is amended, most large CPG companies work with supply chain
data in a time-versioned way. This means that a forecast for the first week of January
2017 based on data received through August 31, 2016 is kept separate and distinct
from a forecast for the same first week of January 2017 using data received through
September 30, 2016.

In addition to storing data in time-versioned partitions, data from different partners
is often ingested into separate datasets. This greatly simplifies the ingestion logic.
After ingestion, as the data moves into the refined stage, the separate partner datasets
are harmonized to a standard data format so that cross-partner analyses can be effi‐
ciently conducted.

Creating Metadata
In most cases, the data that you are ingesting during the raw data stage is known; that
is, you know what you are going to get and how to work with it. But what happens
when your organization adds a new data source? In other words, what do you do
when your data is partially or completely unknown? Ingesting unknown data triggers
two additional actions, both related to the creation of metadata. One action is focused
on understanding the characteristics of your data, or describing your data. We refer
to this action as generating generic metadata. A second action is focused on using the
characteristics of your data to make a determination about your data’s value. This
action involves creating custom metadata.
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Before discussing the two metadata-producing actions, let’s cover some basics. Data‐
sets are composed of records. Records are composed of fields. Records often repre‐
sent or correspond to people, objects, relationships, or events. The fields within a
record represent or correspond to measurable aspects of the person, object, relation‐
ship, or event. For example, if we consider a dataset that contains transactions from a
store, each record could correspond to a single purchase, and fields might represent
the monetary value of the purchase, the specific goods purchased, the time of the
purchase, and so on. If you’re used to working with relational data, you might be used
to speaking about rows and columns. Records are synonymous with rows, and fields
are synonymous with columns.

When you are describing your data, you should be focused on understanding the
structure, granularity, accuracy, temporality, and scope of your data. Structure, granu‐
larity, accuracy, time, and scope are key aspects of representational consistency. As
such, they are also the characteristics of a dataset that must be tuned or improved by
your wrangling efforts.

Beyond generic metadata descriptions, the data discovery process often requires
inferring and creating custom metadata related to the potential value of your data.
Whereas the generic metadata should be broadly useful to anyone working with the
dataset, custom metadata contextualizes this information to a specific analysis or
organization. In other words, custom metadata builds on or extends generic
metadata.

Both generic and custom metadata are composed of the same base set of characteris‐
tics: structure, granularity, accuracy, temporality, and scope. We will discuss each of
these characteristics in turn and explain how you can better understand them in the
context of your data.

Structure
The structure of a dataset refers to the format and encoding of its records and fields.
We can consider datasets on a spectrum related to the homogeneity of their records
and fields. At one end of the spectrum, the dataset is “rectangular” and can be format‐
ted as a table with a fixed number of rows and columns. In this format, rows in the
table correspond to records, and columns correspond to fields.

If the record fields in a dataset are not consistent (some records have additional fields,
others are missing fields, etc.), you could be dealing with a “jagged” table. Such a table
is no longer perfectly rectangular. Data formats like JSON and XML support datasets
like this, in which record fields are not fully consistent.

Further along the spectrum are datasets with a heterogeneous set of records. For
example, a heterogeneous dataset from a retail organization might mix customer
information and customer transactions. This is a common occurrence if you consider
the tabs in a complex Excel workbook. Most analysis and visualization tools will
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require these different kinds of records to be split into separate files or tables. Analy‐
ses that require all of these records will often start by joining or blending the records
together based on shared fields.

The encoding of a dataset specifies how the record fields are stored and presented to
the user. Are the timestamps in local time zones or mapped to UTC? Do date/time
fields conform to specifications like ISO 8601? Are ages stored in years, days, or frac‐
tions of decades? Are account balances in US dollars? Are the postal codes up to date?
Are accented characters supported, or have they been replaced with their nonaccen‐
ted counterparts? Are right-to-left writing systems, like Arabic, supported?

In many cases, it is advisable to encode a dataset in plain text. This makes the file
human-readable. A major drawback to encoding the file in plain text is the size of the
file; it is far more space efficient to use binary encodings of numerical values, or to
compress the file using standard algorithms like gzip and bzip.

Assessing the structure of your dataset is primarily a generic metadata question.
Before you can begin wrangling your data, you need to understand how that data is
structured. This often requires counting the number of records and fields in a dataset,
and determining the dataset’s encoding.

Beyond these generic metadata concerns, you might need to generate custom meta‐
data pertaining to the specific structure of your dataset. Earlier in this chapter, we dis‐
cussed CPG organizations that need to work with data provided by their external
trading partners. Because this data originates outside of the organization, CPG ana‐
lysts often need to determine the custom fields that each trading partner is adding to
the dataset. Maybe Walmart’s datasets include a slightly different set of fields than
those for Target. When you make these determinations, you generate custom
metadata.

Basic Questions to Assess Structure
Here are some of the questions you need to ask when assessing data structure:

• Do all records in the dataset contain the same fields?
• How can you access the same fields across records? By position? By name?
• How are the records delimited/separated in the dataset? Do you need sophistica‐

ted parsing logic to separate the records from one another?
• How are the record fields delimited from one another? Do you need to parse

them?
• How are record fields encoded? Human readable strings? Binary numbers? Hash

keys? Compressed? Enumerated codes?
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• What is the complexity of the encoding? Primitive elements like integers, decimal
numbers, short strings, and so on? Higher-order elements like key-value sets or
arrays?

• What are the semantics of the encoded data? Do these semantics entail associated
data quality, consistency, and accuracy checks?

• What are the relationship types between records and the record fields? Singular
(record should have one and only one value for a field, like customer date of
birth)? Set-based (record could have many values for the field, like customer
shipping addresses)?

Granularity
The granularity of a dataset refers to the kinds of entities that each data record repre‐
sents or contains information about. In their most common form, records in a dataset
will contain information about many instances of the same kind of entity.

We typically describe granularity in terms of coarseness and fineness. In the context
of data, this means the level of depth or the number of distinct entities represented by
a single record of your dataset. For example, a dataset in which a single record repre‐
sents a single sales transaction by a single customer at a particular store would have a
fine granularity. A dataset in which each record represents the total sales in each store
for each day would have a coarse granularity. At an even coarser granularity, you
might have a dataset in which each record represents total sales by region and week.
Depending on your intended use of the dataset, the granularity might be just right,
too coarse, or too fine.

There are subtleties to assessing the granularity of a dataset that involve applying
organizational knowledge. These are examples of creating custom metadata related to
granularity. For example, at first glance, a dataset might appear to contain records
that represent customers. However, those records might in fact correspond to all
known contacts of your company (only a subset of whom are actual, paying custom‐
ers). Moreover, this contacts dataset might contain multiple entries for the same per‐
son, resulting from that person signing up to receive information through multiple
channels (e.g., Facebook and via a direct visit to your website). In this case, a more
appropriate description of the granularity of the dataset might be “registration
events.”

Raw Data Stage Actions: Ingest Data and Create Metadata | 17



Basic Questions to Assess Data Granularity
Following are questions that you need to ask when assessing data granularity:

• What kind of thing (person, object, relationship, event, etc.) do the records
represent?

• Are the records homogeneous (represent the same kinds of things)? Or heteroge‐
neous?

• What alternative interpretations of the records are there? For example, if the
records appear to be customers, could they actually be all known contacts (only
some of which are customers)?

Accuracy
The accuracy of a dataset refers to its quality. In other words, the values populating
record fields in the dataset should be consistent and accurate. For example, consider a
customer actions dataset. This dataset contains records corresponding to when cus‐
tomers added items to their shopping carts. In some cases, the reference to the item
added to the cart in the record is not accurate; perhaps a UPC code is used but some
of the digits are missing, or the UPC code is out of date and has since been reused for
a different item. Inaccuracies would, of course, render any analysis on the dataset
problematic.

Other common inaccuracies are misspellings of categorical variables, like street or
company names; lack of appropriate categories, like ethnicity labels for multiethnic
people; underflow and overflow of numerical values; and missing field components,
like a timestamp encoded in a 12-hour format but missing an AM/PM indication.

Accuracy assessments can also apply to frequency outliers—values that occur more or
less often than you’d expect. Making frequency assessments is primarily a custom
metadata concern, given that determining whether the range of values in a dataset is
accurate relies on organizational knowledge. Returning to our CPG example, a
supply-chain analyst might know that a certain trading partner only reports UPCs
within a particular range. In this case, the analyst needs to generate custom metadata
around the accuracy of the UPC code distribution in a dataset.
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Basic Questions to Assess Data Accuracy
When assessing data accuracy, you need to look at the following:

• Many accuracy issues are type specific:
— For date times, are time zones included or adjusted into a standard time zone

like UTC? If the times are presented in 12-hour format, is AM/PM demarca‐
ted? Are the positions of month and day fields ambiguous (e.g., 01/02/17 ver‐
sus 02/01/17)? Are there signs that the information is wrong (e.g., across your
customer dataset, do you have an unusual amount of people with date-of-
births corresponding to the first year of a decade like 1970, 1980, 1990, or
born in January or on the first date of the month)?

— For addresses, are the address components consistent? Is the correct postal
code associated with the address? If there are GPS coordinates, do they match
the address?

— For numeric items like phone numbers and UPC codes, are digits missing or
are subcomponents of the number invalid (like an invalid area code on a
phone number)?

— For names, are there misspellings? Or missing fields (like no first name for a
customer)?

— For email addresses, is the email domain valid?
— For sales transactions, are the currency amounts all in the same currency? Do

they show signs of inaccuracy or fraud (i.e., a preponderance of unlikely
values)?

• Some accuracy is related to the mechanisms that produce the data:
— Is there any chance of sensor drift that has caused systematic inaccuracies

over time?
— Is the data entered by people? If so, there might be a high incidence of mis‐

spellings and nonstandard abbreviations.
• Finally, you will want to understand the distribution of inaccuracies across your

dataset:
— What is the measurable distribution of inaccuracies?
— Does the distribution of inaccuracies affect a large number of records?
— Are inaccuracies concentrated in a particular subset of records?
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Temporality
A data record is a representation of an entity at a particular time (or set of times).
Accordingly, even though a dataset might have been an accurate and consistent repre‐
sentation at the time it was created, subsequent changes might render the representa‐
tion inaccurate or inconsistent. For example, you might use a dataset of customer
actions to determine the distribution of items people own. Weeks or months after an
initial sale, however, some of these items might be returned. Now the original dataset,
although an accurate representation of the original sales transaction, is no longer an
accurate representation of the items a person owns.

The time-sensitive nature of representations, and hence of datasets, is an important
aspect that should be explicitly noted. Sometimes this is done on a per-record basis
(e.g., each customer action contains a timestamp). Data records that do not corre‐
spond to events are less likely to contain embedded timestamps; for example, a cus‐
tomer database with names, addresses, demographics, or a reference dataset of UPCs
with item descriptions. However, even when time is not explicitly represented in a
dataset, it is still important to understand how time may have impacted the records in
the dataset. In the first example, a customer might move and his address can become
inaccurate. In the second example, UPC numbers might be recycled and item
descriptions can become inaccurate. In all such cases, knowing when the dataset was
generated can provide valuable insight into potential inaccuracies and the appropriate
wrangling actions needed to remediate those inaccuracies.

Basic Questions to Assess Data Temporality
The following questions will help you assess data temporality:

• When was the dataset collected?
• Were all the records and record fields collected/measured at the same time? If

not, is the temporal range significant?
• Are the timestamps associated with collection of the data known and available (as

a record field) or as associated metadata?
• Have some records or record field values been modified after the time of cre‐

ation? Are the timestamps of these modifications available?
• In what ways can you determine if the data is “stale”? For example, you might

have purchased a marketing leads database and want to verify the contact infor‐
mation for the people represented in the dataset. Is it sufficient to sample the
records and manually verify the data? Can you automatically verify it by using
third-party services?
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• If there are conflicting values in the data (e.g., multiple mailing addresses for a
person), can you use timestamps to determine which value is “correct”?

• Can you forecast when the values in the dataset might become “stale”?

Scope
The scope of a dataset has two major dimensions. The first dimension concerns the
number of distinct attributes represented in a dataset. For example, for each customer
action, we might know when it happened (e.g., a timestamp) and some details about
it (like which UPC a customer added to a basket). The second dimension concerns
the attribute-by-attribute population coverage: are “all” the attributes for each field
represented in the dataset, or have some been randomly, intentionally, or systemati‐
cally excluded?

Let’s begin our discussion of the importance of scope by addressing the number of
distinct attributes in a dataset. Each distinct attribute is generally represented in a
dataset by a single field. A dataset with a wide scope will have a large number of
fields, whereas a dataset with a narrow scope will have a small number of fields. You
could imagine that a customer information dataset with a very wide scope could have
hundreds of distinct fields, each representing a different attribute of a customer (age,
salary, ethnicity, family size, etc.).

Obviously, increasing the scope of a dataset by adding in more entity characteristics
extends the analytical potential of the dataset. However, as with granularity, you want
to include only as much detail as you might use, but no more. The level of detail
required might depend on your analytics methodology. Some methodologies, like
deep learning, call for keeping many redundant attributes and letting statistical meth‐
ods boil those many attributes down to a smaller number. Other methodologies oper‐
ate best with a limited number of attributes.

Regarding population coverage, the most common scenario is that not all of the pos‐
sible entities have been represented. Sometimes, missing records are the result of
external factors, like the logging infrastructure failing due to a power outage. Other
times you’re missing some of the data due to an operational or logistical error: a
chunk of a file was destroyed, a sensor was knocked off power, somebody didn’t give
you an entire file, or somebody redacted the dataset. The cause of the missing data
can be helpful to know because it can help account for the bias downstream. For
example, if you know that a dataset was scrubbed of people under 18 for legal rea‐
sons, you should account for the average age in the dataset being higher than the true
population that the dataset (imperfectly) represents.

More generally, we might want to introduce the notion of an idea or “true” source of
data in the real world, and an imperfect record of that data that was acquired. When
statisticians or scientists speak of “sampling,” they usually are talking about this—
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acquiring a small but representative subset of the “true” data as a stored dataset. The
ideal (true) source of data might be infeasible to capture (think about the temperature
of every cubic inch of air at every second hovering over the globe—we sample that to
get temperature readings at particular thermometers). The data that is recorded is
inherently a sample. This is a big difference between real-world (e.g., IoT) data and
electronic data like transactions or web click logs.

It is important to understand any systematic bias in a dataset, because for cases in
which systematic bias exists, any analytical inferences made using the biased dataset
can be rendered invalid. A canonical example is drug trial analysis, where analysts are
concerned with assessing the efficacy of the drug being trialed. The granularity of
drug trial datasets is often at the level of patients in the trial. If, however, the scope of
the dataset has been intentionally reduced by systematically removing records associ‐
ated with some patients in the trial (either because they died during the trial or
because they began showing abnormal biometrics), there’s a good chance that any
analysis on the dataset is likely to misrepresent the actual impact of the drug.

The most common custom metadata question is: “How can this dataset blend with
(join or union to) my other datasets?” To answer this question, we must understand
the scope of the datasets. In some cases, the new dataset might represent an extension
of an existing dataset. Sometimes, this extension is disjoint, involving records repre‐
senting entities in the overall population that are missing in your existing datasets.
Sometimes, the dataset extension is overlapping, creating a need to deduplicate or
harmonize records representing the same entity. In other cases, a new dataset might
provide additional record fields (e.g., household disposable income to be matched
against your customer list or counts of different kinds of accidents by postal code).

Basic Questions to Assess Data Scope
The following questions will help you assess the scope of your data:

• Given the granularity of the dataset, what characteristics of the things (e.g., peo‐
ple, objects, relationship, events, etc.) represented by the records are captured by
the record fields? What characteristics are not captured?

• Are the record fields consistent? For example, does the customer’s age field make
sense relative to the date-of-birth field? If the record corresponds to a purchase
transaction, does the cost of the listed set of purchased items add up to the total
transaction amount?

• For the analysis that you want to perform, can you deduce or infer additional rel‐
evant characteristics from the ones that you have? For example, can you infer the
demographics of the people in a household from partner and dependents record
fields?
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• Are the same record fields available for all records? Are they accessible via the
same specification (position, name, etc.)?

• Do the records in the dataset represent the entire population of associated things
(people, objects, relationships, events, etc.)? Are there missing records (e.g.,
things in the population, say people, with no associated record)? Are the missing
records randomly missing or systematically missing?

• Are there multiple records for the same thing? If so, does this change the granu‐
larity of your dataset (e.g., from customers to contacts) or require some amount
of deduplication before analysis?

• Does the dataset contain a heterogeneous set of records (representing different
kinds of entities)? If so, what is the relationship between the different kinds of
records?

Refined Data Stage Actions: Create Canonical Data and
Conduct Ad Hoc Analyses
After you have ingested your raw data and fully understood the metadata aspects of
your raw data, the next major stage in data projects involves refining the data and
conducting a broad set of exploratory analyses. Three primary actions define this
stage, as shown in Figure 2-4: design and preparation of “refined” data, ad hoc report‐
ing analyses, and exploratory modeling and forecasting. As in the raw data stage,
these actions can be separated into two groups distinguished by their output. One
group is focused on outputting refined data that enables immediate application to a
wide range of analyses. The second group is focused on outputting insights and infor‐
mation derived from the data, ranging from simple reporting to complex models and
forecasts.

Figure 2-4. Primary action and output actions for the refined data stage
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Designing Refined Data
The overarching goal in designing and creating your refined data is to simplify the
foreseeable analyses you want to perform. Of course, you won’t foresee every analysis.
The likely scenario is that insights and patterns gleaned from an initial set of analyses
will inspire new analysis directions you hadn’t previously considered. To support
these new directions, you might need to compile new refined datasets (or, at least,
modify the ones you already have). We can, and often do, iterate between the actions
in the refined data stage.

In the raw data stage, ingestion involves minimal data transformation—just enough
to comply with the syntactic constraints of the data storage system. By contrast, the
act of designing and preparing “refined” data often involves a significant amount of
transformation. These transformations are often guided by the range of analyses that
you plan to conduct on the data, and by the metadata-generating activities under‐
taken during the raw data stage. If you previously identified quality and consistency
issues with the dataset’s structure, granularity, accuracy, time, or scope, those issues
should be remedied during the refined data stage. We will address each of these
metadata-related issues in turn, and discuss how you can design your refined data to
resolve or mitigate such issues.

Addressing structural issues
Most visualization and analysis tools expect tabular data, meaning that every record
has the same fields instantiated in the same order. Depending on the structure of the
raw data, converting data into tabular format can require significant transformations.
Furthermore, for modeling and forecasting purposes, you might need to convert cate‐
gorical data to separate indicator values for category value; for example, you might
need to expand a record field encoding gender into multiple fields corresponding to
characteristics like “is male” or “is female.”

Addressing granularity issues
From a granularity perspective, it is prudent to build refined datasets at the finest res‐
olution of records that you plan to analyze. For example, let’s assume that your sales
records show a significant increase in the average amount of a sales transaction, and
that you can identify a subset of users who form the driver of this shift (this group
makes significantly larger purchases relative to other customers, and removing them
from the average calculation produces an average sale amount consistent with the
recent past). You might want to understand what exactly differentiates these custom‐
ers from the rest: Are they buying more expensive items? More items than average?
Do they shop more often? Do they seem unaware of sales and coupons? Chances are,
answering these questions will require the records of actions leading up to the sales
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transaction; in this case, the records with the finest granularity are most ideal for your
analysis.

However, if the majority of the analyses focus on records of a coarser granularity,
(e.g., customer segments or demographic groups, and lifetime purchase totals), it also
might make sense to store a version of the dataset at this granularity, as well. Retain‐
ing multiple versions of the same dataset with different granularities can help stream‐
line downstream analyses based on groups of records.

Addressing accuracy issues
Another key objective in designing and creating refined datasets is to remedy known
accuracy issues.

The main strategies used to handle inaccuracies are to: (a) remove records with inac‐
curate values (provided the inaccuracies can be detected); (b) retain records with
inaccurate values but mark them as inaccurate (which still allows some analyses to be
conducted over the dataset); or (c) replace the inaccurate values with default or esti‐
mated values in a process known as imputation. As an example, for numerically dis‐
tributed values like the dollar amount of sales transactions, you might determine that
extremely large values are inaccurate. These extreme values might be replaced by a
maximum value to ensure that aggregate calculations like average and standard devi‐
ation are not overly biased.

Conflicting information between fields (e.g., multiple addresses or significant devia‐
tion between a date-of-birth field and an age field) or between a field and applicable
business logic (e.g., a transaction amount too large to be possible given constraints in
the transaction process) are primary accuracy issues that should be addressed during
the refined data stage. In some cases, generally when the percent of records with inac‐
curate values is small and unlikely to be significant, the appropriate remedy is to
remove affected records. For many analyses, removing these records will not materi‐
ally affect the results. In other cases, the best approach might be to reconcile conflict‐
ing information; for example, recalculating customer age using date-of-birth and the
current date (or the dates of the events you want to analyze).

In many cases, resolving conflicting or inaccurate data fields in your refined data is
best done using an explicit reference to time. Consider the multiple addresses prob‐
lem in a customer dataset. Perhaps each address is (or was) correct, representing the
various home addresses a person has had throughout her life. Assigning date ranges
to the addresses might resolve the conflicts. Similarly, a transaction amount that vio‐
lates current business logic might have occurred prior to that logic being enforced, in
which case you might want to keep the transaction in the dataset to preserve the
integrity of historical analyses.

The most useful notion of “time” can often require some care. For example, there
might be a time when an action occurred, and a time when it was recognized. This is
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particularly common when dealing with bank transactions. In some cases, an abstract
version number might be more appropriate than a timestamp. For example, for data
generated by software, it might be more important to record the version of the soft‐
ware that was used rather than the time when the software ran. Similarly, in scientific
experiments it might be more useful to know the version of a data file that was ana‐
lyzed rather than the time that the analysis ran. In general, the appropriate choice of
time or version often depends on the specifics of an analysis; therefore, it’s best to
preserve (and document!) all the timestamps and version numbers that are available
for a record.

Addressing scope issues
Stepping back from individual record field values, it is also important to design the
scope of your refined datasets so that these datasets include the full required set of
records and record fields. For example, suppose that your customer data is split into
multiple datasets (one containing contact information, another containing transac‐
tion summaries, etc.) but most of your analyses involve all of these fields. It might
make sense to create a fully blended dataset with all of these fields to streamline your
analyses.

Perhaps the most important scope-related challenge is ensuring your refined datasets
have understood population coverage. This means that a dataset should accurately
express the relationship between the set of things represented by records in the data‐
set (people, objects, etc.) and the wider population of those things (e.g., all people and
all objects).

Ideally, your dataset contains one and only one record representing each member of
the population of things you want to analyze, but more likely, your dataset will con‐
tain a subset of records from the complete population. If the subset is a true, random
subset of the wider population, your dataset can be analytically used to infer insights
about the population as a whole. If, however, the subset of represented things in your
dataset is not random—that is, it exhibits some kind of bias—you might be restricted
on the kinds of analyses you can validly conduct. It’s beyond the scope of this book to
discuss the statistical implications of bias between your dataset and the population of
things it partially represents, but this is an important note to be aware of when
designing refined datasets.

Refined Stage Analytical Actions
To complete our discussion of the refined data stage, we’ll describe its two core ana‐
lytical actions: ad hoc reporting analyses, and exploratory modeling and forecasting.

Reporting is the core action for answering specific questions using your data. You can
think of business intelligence analytics and dashboarding as specific forms of report‐
ing. These analyses are primarily retrospective—they use historical data to answer
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questions about the past or present. The answer to those questions might be as simple
as a single number or statistic, or as complex as a full report with additional discus‐
sion and description of the findings. The nature of the initial query constrains the
consumption of the output—there likely won’t be an automated system that can con‐
sume the output and take direct action as a result. Instead, the results will provide
indirect value by informing and influencing people.

There are many types of ad hoc analyses, ranging from straightforward questions that
can be answered in a succinct and definitive manner (e.g., how many customers pur‐
chased item X last week, or, what were the top three most viewed documents/pages
on our website last month?) to open-ended investigations that might last months or
years (e.g., identify the key factors driving the customer trend of switching from
desktop to mobile devices). A common starting point for ad hoc analyses is an anom‐
aly in a regular report. Perhaps sales spiked up more than expected or there was a dip
in transactions from a particular product line or region of stores. If totally unexpec‐
ted, the anomaly needs to be assessed from a number of different perspectives. Is
there a data reporting or data quality problem? If the data is valid (i.e., the anomaly
reflects a change in the world and not just in the representation of the world con‐
tained in the dataset), can the anomaly be isolated to a subpopulation? What other
changes are correlated with the anomaly? Are all of these changes linked via causal
dependencies to one another or to a common root change?

Unlike ad hoc analyses, which are primarily retrospective, modeling and forecasting
analyses are primarily concerned with the future. These analyses ask, “What do we
expect to happen given what we have observed in the past?” In the case of forecasting,
the explicit objective is to predict future events: total sales in the next quarter, percent
of customer churn next month, likelihoods of each customer renewing their con‐
tracts, and so on. In many cases, these predictions are built on models of how the tar‐
get prediction depends on and relates to other measurable aspects in your dataset. For
some analyses, the useful output is not a prediction (or set of predictions), but the
underlying model itself.

In most cases, modeling as an explicit activity is an attempt to understand the rele‐
vant factors that drive the behavior (whether it is customer behavior, market move‐
ments, shifts in the existence or nature of relationships, frequencies or types of events,
etc.) that interests you. Even though modeling is a common prerequisite activity for
distinguishing correlated factors from causal factors, it is important to note that more
causal analysis will also require some amount of carefully designed experimentation;
for example, holding some factors constant while perturbing others and/or modifying
the underlying system to decouple or realign factors so that you can assess whether
those factors truly drive the behavior.

As an example, recall in Chapter 1 that we talked about Facebook’s user growth and
their reliance on a measurable factor to the Facebook user experience, the number of
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friends a user has, to drive user retention. Simple analysis of the relationship between
number of friends and long-term user retention would show that it is not a causal
relationship. There are long-time users of Facebook who have only a few friends, and
there are Facebook users who had many friends who have churned from the plat‐
form. Nonetheless, these factors are strongly correlated. More important, the product
changes that Facebook made to increase the number of friends that users have
demonstrably moves the underlying causal factors that do drive user retention.

Production Data Stage Actions: Create Production Data
and Build Automated Systems
After you have refined your data and have begun generating valuable insights from
that data, you will naturally start to separate out the analyses that need to be regularly
refreshed from the ones that were sufficient as one-off analyses. It’s one thing to
explore and prototype (which is the focus of activities in the refined data stage), but
wrapping those initial outputs in a robust, maintainable framework that can automat‐
ically direct people and resources is a whole other ballgame. This takes us into the
production data stage.

A solid set of initial insights often leads to statements like: “We should track that
measure all the time,” or “We can use those predictions to expedite shipping of cer‐
tain orders.” The solutions to each of these statements involve “production systems”;
that is, systems that operate in a largely automated way and with a well-defined level
of robustness. At a minimum, creating production data requires further optimiza‐
tions to your refined data (Figure 2-5), and then engineering, scheduling, and moni‐
toring the flow of that optimized data into regular reports and data-driven products
and services.

Figure 2-5. Primary action and output actions for the production data stage
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Creating Optimized Data
So, what does it mean to optimize your data? In some sense, optimizing data is not
unlike designing refined data. You can think of optimized data as the ideal form of
your data; it is designed to simplify any additional downstream work to use the data.
Unlike refined data, however, the intended use of optimized data should be highly
specified.

These specifications go beyond just the scope and accuracy of the values in the data.
There are also specifications related to the processing and storage resources that will
need to be applied to work with the data on an ongoing basis. These constraints will
often dictate the structure of the data, as well as the ways in which that data is made
available to the production system. In other words, although the goal of refining data
is to support the widest set of analyses as efficiently as possible, the goal of optimizing
data is to robustly and efficiently support a very narrow set of analyses.

Designing Regular Reports and Automated Products/Services
Building regular reports and data-driven products and services requires more than
just wiring the data into the report generation logic or the service providing logic.
One major source of additional work comes from monitoring the flow of data and
ensuring that requisite structural, temporal, scoping, and accuracy constraints remain
satisfied over time. The fact that data is flowing in these systems implies that new (or
updated) data will be processed in an ongoing manner. New data will eventually vary
from its historical equivalents (maybe you have updated customer interaction events,
or the latest week’s sales data). Structural, temporal, scoping, and accuracy constraints
define the boundary around permissible variation (e.g., minimum and maximum
sales amounts or coordination between record fields like billing address and currency
of transaction).

Within the constraints, the reporting and product/service logic must handle the var‐
iation. This deviates from exploratory analytics that can, for speed or simplicity, use
logic specific to the dataset being analyzed. For production reporting and products/
services, the logic must be generalized. Common dataset variations that drive changes
to the data wrangling logic include extensions to the value ranges (e.g., current dates
or redefining regions or customer segments); new accuracy issues (e.g., previously
unseen misspellings); record fields that have been removed or emptied (e.g., for legal
compliance purposes, certain information about customers like age or gender might
be redacted); appearance of duplicate records; or disappearance of a subset of records
(e.g., due to a change in customer segment names, one or more groups might be
dropped).

Of course, you could tighten the boundary of permissible variations to exclude things
like duplicate records or missing subsets of records. If so, the logic to catch and rem‐
edy these variations will likely live in the data optimization action.
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Data Wrangling within the Workflow Framework
In this chapter, we have described the characteristic actions and movement of data
through the raw, refined, and production stages. Throughout that discussion, we
touched on the kinds of data and outputs involved in each stage. But there’s still a
piece missing from our discussion: what is data wrangling, and how does it relate to
our workflow framework?

Fundamentally, data wrangling is the process involved in transforming or preparing
data for analysis. If you refer back to our earlier workflow diagrams, data wrangling
occurs between the stages; it is the set of actions that allows you to move from raw
data to refined data, or from refined data to optimized, production data. Sometimes
(particularly in the transition from the raw stage to the refined stage) data wrangling
can resemble traditional ETL processes. We consider ETL to be one type of data
wrangling, specifically a type of data wrangling managed and overseen by an organi‐
zation’s shared services or IT organization. But data wrangling can also be handled by
business users in desktop tools like Excel, or by data scientists in coding languages
like Python or R.

We see data wrangling as a core task within every action in the framework. This is not
to say, however, that data wrangling tasks will be identical throughout this workflow
framework. These wrangling tasks will differ, particularly in the kinds of transforma‐
tions that are applied. In Chapter 3, we dive into the specifics of data wrangling,
describe the various types of data wrangling transformations, and explain how data
wrangling tasks differ across our workflow framework.
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CHAPTER 3

The Dynamics of Data Wrangling

In Chapter 2, we introduced a framework capturing the variety of actions involved in
working with data. Each of these actions involves some amount of data wrangling. In
this chapter, we describe the dynamics of data wrangling, the breadth of transforma‐
tions and profiling required to wrangle data, and how these aspects of data wrangling
vary by action in our framework.

Data Wrangling Dynamics
Data wrangling is a generic phrase capturing the range of tasks involved in preparing
your data for analysis. Data wrangling begins with accessing your data. Sometimes,
access is gated on getting appropriate permission and making the corresponding
changes in your data infrastructure. Access also involves manipulating the locations
and relationships between datasets. This kind of data wrangling involves everything
from moving datasets around a folder hierarchy, to replicating datasets across ware‐
houses for easier access, to analyzing differences between similar datasets and assess‐
ing overlaps and conflicts.

After you have successfully accessed your data, the bulk of your data wrangling work
will involve transforming the data itself—manipulating the structure, granularity,
accuracy, temporality, and scope of your data to better align with your analysis goals.
All of these transformations are best performed with tools that provide meaningful
feedback (so that the manipulator is assured that the manipulations were successful).
We refer to this feedback as profiling. In many cases, a predefined (and, hence, some‐
what generic) set of profiling feedback is sufficient to determine whether an applied
transformation was successful. In other cases, customized profiling is required to
make this determination. In either event, the bulk of data wrangling involves frequent
iterations between transforming and profiling your data.
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A final set of data wrangling tasks can be understood as publishing. Publishing is best
understood from the perspective of what is published. In some cases, what is pub‐
lished is a transformed version of the input datasets (e.g., in the design and creation
of “refined” datasets). In other cases, the published entity is the transformation logic
itself (e.g., as a script that generates the range of statistics and insights in a regular
report). A final kind of publishing involves creating profiling metadata about the
dataset. These profiling reports are critical for managing automated data services and
products.

Figure 3-1 illustrates the simple relationship between these data wrangling steps. As
just mentioned, wrangling begins with access. From there, the bulk of time and
energy is spent transforming and profiling the results of the transformation. Finally,
the desired output is published for downstream consumption. Realistically, data
wrangling is far more iterative. In addition to iterations between transforming and
profiling the data, there are less frequent iterations that return to accessing data. Like‐
wise, during or soon after publishing a result, you might realize that the output is not
exactly correct and you need to apply additional transformations or expose some
additional profiling results. These iterations are captured in Figure 3-1.

Figure 3-1. A simple diagram illustrating the basic steps of data wrangling

The work begins by obtaining access to your data. You might already have the dataset
in a file and need to do little more than double-click to open it. In other cases, you
might need to submit a request for access and obtain the necessary credentials. With
the data in hand, the bulk of data wrangling involves iterating between applying
transformations and assessing the impact of those transformations through profiling.
After you have modified the dataset as desired, or authored a robust data transforma‐
tion script, or produced the profiling statistics and visualizations that showcase
aspects of the dataset, any or all of these outputs must be published.

Additional Aspects: Subsetting and Sampling
There are two additional aspects to the dynamics of data wrangling that we believe
are vital to finding efficiencies in your data wrangling practice: subsetting data and
sampling data. Both are applicable in certain circumstances, versus the general steps
and dynamics we discussed earlier, which are broadly applicable.
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First, consider the case in which your dataset contains a heterogeneous set of records,
differing either in structure (e.g., some records contain more or different fields from
the rest) or in granularity (e.g., some records correspond to customers, whereas oth‐
ers correspond to accounts). Faced with this heterogeneity, the best wrangling
approach is to split up the original dataset and wrangle each subset separately; then, if
necessary, merge the results together again. Process efficiencies are fundamentally
rooted in the ability to apply the same processing mechanism (in this case, data trans‐
formation logic) to many, similar inputs. At one scale, this amounts to authoring data
transformation steps that operate effectively across every record in your dataset. At a
wider scale, this amounts to authoring a data transformation script that operates
effectively across multiple, similarly structured datasets. This case requires subsetting
data for the most efficient data wrangling process.

Now consider the case in which your dataset is too large to manually review each
record or when your dataset is so large that even simple transformations require pro‐
hibitively long timeframes to complete (or speeding up these transformations would
have prohibitively large resource costs); in other words, when you are working with
big data. In this case, the iterative process of transforming and profiling your data is
materially hampered by the time required to compute and execute transformations.

Suppose that you make a small change to a derived calculation or you change a rule
to group a few customer segments into a wider segment. Now you apply this transfor‐
mation and must wait a minute, or 10 minutes, or half a day to see what the results
might look like. Understandably, data wrangling work will dominate your analysis
workflows and you won’t get through many analyses. The critical approach to speed‐
ing up your data wrangling is to work with some samples of the entire dataset that
you can transform and profile at interactive time scales (ideally within 100 milli‐
seconds, but occasionally up to a few seconds). Unfortunately, working with samples
to speed up your data wrangling is not as straightforward as it sounds.

The complexities of data sampling relative to analysis are well discussed in statistics
and surveying texts like Leslie Kish’s Survey Sampling. Sufficient for our discussion
here is to point out the obvious connection between sampling and profiling. Again,
our objective is to speed up the task of data wrangling by providing profiling feed‐
back from a sample of the dataset (which can be processed at interactive speeds) ver‐
sus the entire dataset.

To understand the importance of sampling, consider a simple transformation involv‐
ing the calculation to determine the length of time each of your customers has been
using your product or service based on the date each one registered for it. Chances
are, you have some sense of what these ages should be: you started your business 11
years ago, so no customer should show a duration of more than 11 years. You had a
big increase in customers about 3 years ago, so you’d expect to see a corresponding
bump in the overall age distribution around 3. And so on. These expectations point
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to a couple of sampling techniques that would be useful for assessing whether your
transformation to calculate customer age is working correctly. Namely, you want a
sample that contains extreme values (customer records with the earliest and latest
registration dates) and that randomly samples over the rest of the records (so that
overall distributional trends are visible).

Consider a more complex situation that involves case-based transformations based
on record groups; for example, you need to convert transaction amounts to US dol‐
lars, and your dataset contains transactions in Euros, GB Pounds, and so on. Each
reporting currency requires its own transformation. To assess that all of the currency
transformations were applied correctly, you need to profile results covering all of the
currencies occurring in your dataset. Samples that cover all groups, or “strata,” are
often referred to as stratified samples; they provide representation of each group,
even though they might bias the overall trends of the full dataset (by overrepresenting
small groups relative to large ones, for example). There are numerous techniques for
extracting different kinds of samples from large datasets (e.g., see Synopses for Massive
Data: Samples, Histograms, Wavelets, Sketches by Cormode et al.), and some software
packages and databases implement these methods for you.

With an understanding of the basic steps in data wrangling—access, transformation,
profiling, and publishing—and how these steps can incorporate aspects of sampling
to handle big datasets and split/fix/merge strategies for heterogeneous datasets, we
turn our attention now to the core types of transformations and profiling.

Core Transformation and Profiling Actions
The core tasks of data wrangling are transformation and profiling, and the general
workflow involves quick iterations (on the order of seconds) between these tasks. Our
intent in this section is to provide a basic description of the various types of transfor‐
mation and profiling. In later chapters, we will dive into explicit examples of transfor‐
mation and profiling.

Let’s begin our discussion by exploring the transformation tasks involved in data
wrangling. Table 3-1 describes the core types of data wrangling transformations that
you might need to apply to your data.

Table 3-1. Core data wrangling types

Core transformation type Description
Structuring Actions that change the form or schema of your data
Enriching Actions that add new values to your dataset
Cleansing Actions that fix irregularities in your dataset
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The core types of transformation are structuring, enriching, and cleansing. Structuring
primarily involves moving record field values around, and in some cases summariz‐
ing those values. Structuring might be as simple as changing the order of fields within
a record. More complex transformations that restructure each record independently
include breaking record fields into smaller components or combining fields into
complex structures. At the interrecord level, some structuring transformations
remove subsets of records. Finally, the most complex interrecord structuring trans‐
formations involve aggregations and pivots of the data. Aggregations enable a shift in
the granularity of the dataset (e.g., moving from individual customers to segments of
customers, or from individual sales transactions to monthly or quarterly net revenue
calculations). Pivoting involves shifting records into fields or shifting fields into
records.

Whereas structuring transformations move or aggregate existing values from a single
dataset, enriching transformations add fundamentally new values from multiple data‐
sets. The quintessential structuring transformations are joins and unions. Joins com‐
bine datasets by linking records. Unions blend multiple datasets together by matching
up records from two different datasets and concatenating them “horizontally” into a
wider table that includes attributes from both sides of the match.

Beyond joins and unions, another common class of enriching transformations inserts
metadata into your dataset. The inserted metadata might be dataset independent (e.g.,
the current time or the username of the person transforming the data) or specific to
the dataset (e.g., filenames or locations of each record within the dataset). Yet another
class of enriching transformations involves the computation of new data values from
the existing data. In broad strokes, these kinds of transformations either derive
generic metadata (e.g., time conversion or geo-based calculations like latitude-
longitude coordinates from a street address or a sentiment score inferred from a cus‐
tomer support chat log) or custom metadata (e.g., mineral deposit volumes inferred
from rock samples or health outcomes inferred from treatment records). Chapter 6
discusses specific examples of enriching transformations.

The third type of transformation cleans a dataset by fixing quality and consistency
issues. Cleaning predominately involves manipulating individual field values within
records. The most common variant fixes missing (or NULL) values. We explore spe‐
cific examples of cleansing transformations in Chapter 7.

Switching gears, the core types of profiling are distinguishable by the unit of data they
operate on: individual values or sets of values. Table 3-2 provides a description of the
two types of core profiling.
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Table 3-2. Two types of core profiling

Core profiling type Description
Individual values profiling Understanding the validity of individual record fields
Set-based profiling Understanding the distribution of values for a given field across multiple records

Profiling on individual field values involves two kinds of constraints: syntactic and
semantic. Syntactic constraints focus on formatting; for example, a date value should
be in MM-DD-YYYY format. Semantic constraints are rooted in context or propriet‐
ary business logic; for example, your company is closed for business on New Year’s
Day so no transactions should exist on January 1 of any year. Ultimately, this type of
profiling boils down to determining the validity of individual record field values, or,
by extension, entire records.

Set-based profiling focuses on the shape and extent of the distribution of values
found within a single record field, or in the range of relationships between multiple
record fields. For example, you might expect retail sales to be higher in holiday
months than in nonholiday months; thus, you could construct a set-based profile to
confirm that sales are distributed across months as expected. We will explore specific
examples of set-based profiling and individual profiling in Chapter 4.

So far, we’ve provided an overview of the basic types of transformations and profiling.
Soon after doing the work, however, your focus will likely shift to include the second-
order concern of doing the work well. In other words, in addition to putting a script
of transformation logic together and profiling the steps of that script as you go to
make sure they operate correctly on the initial data source(s), you want to optimize
that script to run efficiently and robustly. Furthermore, over time, as new data man‐
dates edits to the transformation script or you find more optimal ways to author por‐
tions of the transformation script, you’ll likely want to track changes to the script and,
possibly, manage multiple versions of it for legacy and capability purposes. Support‐
ing these changes might require some additional, customized profiling information,
tracking statistics across variations of the dataset.

Data Wrangling in the Workflow Framework
Data wrangling can be a major aspect of every action in your workflow framework
(refer to Figure 2-2). In this section, we discuss each action in turn, describing how
data wrangling commonly fits into the action.

Ingesting Data
As we discussed in Chapter 2, ingesting data into the raw data stage can involve some
amount of data wrangling. Loading the data into the raw data stage location might
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require some nontrivial transformation of the data to ensure that it conforms to basic
structural requirements (e.g., records and field values encoded in a particular for‐
mats). The extent of the constraints to load the data will vary by the kind of infra‐
structure of your raw data stage. Older data warehouses will likely require particular
file formats and value encodings, whereas more modern infrastructures like Mon‐
goDB or HDFS will permit a wider variety of structures on the ingested data (involv‐
ing less data wrangling at this stage).

In either event, the explicit goal when loading raw data is to perform the minimal
amount of transformations to the data to make it available for metadata analysis and
eventual refinement. The general objectives are “don’t lose any data” and “fixing qual‐
ity problems comes next.” Satisfying these objectives will require limited structuring
transformations and enough profiling to ensure that data was not lost or corrupted in
the ingestion process.

Describing Data
Assessing the structure, granularity, accuracy, temporality, and scope of your data is a
profiling-heavy activity. The range of profiling views of your data required to build a
broad understanding of your data will also require an exploratory range of transfor‐
mations. Most of the exploratory transformations will involve structuring: breaking
out subcomponents of existing values to assess their quality and consistency, filtering
the dataset down to subsets of records to assess scope and accuracy, aggregating and
pivoting the data to triangulate values against other internal and external references,
and so on.

Assessing Data Utility
Assessing the custom metadata of a dataset primarily involves enriching and cleaning
transformations. In particular, if the dataset is a new installment to prior datasets, you
will need to assess the ability to union the data. Additionally, you will likely want to
join the new dataset to existing ones. Attempting this join will reveal issues with link‐
ing records between the datasets: perhaps too few links are found, or, equally prob‐
lematic, there are too many duplicative links. In either case, by treating your existing
data as a baseline standard to which the new dataset must adhere or align, you will
likely spend a good amount of time cleaning and altering values in the new dataset to
tune its overlap with existing data. As the new data is blended in with the old, set-
based profiling will provide the basic feedback on the quality of the blend.

Designing and Building Refined Data
Building refined datasets that are broadly useful across a broad range of ad hoc analy‐
ses and deeper modeling and forecasting explorations requires the breadth of trans‐
formation and profiling types. Structuring the data to align with the granularity and
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scope of intended analyses will save time. For example, if most of your planned analy‐
ses are at a granularity (e.g., weekly total sales) that differs from the granularity of the
raw data (e.g., individual sales transactions), it likely makes sense to apply aggrega‐
tion or pivot transformations. In terms of enrichment, if many of your analyses
involve multiple data sources, it makes sense to build blended datasets using enrich‐
ment transformations like joins and unions. Similarly, depending on how frequently
your analyses require nontrivial derivations like smoothed time-series values or senti‐
ment scores, it might make sense to build these into the refined datasets (as opposed
to requiring each analysis to rebuild these enrichments as needed). Finally, cleaning
the data is key to building broadly usable datasets. You need to flag inaccurate or
inconsistent values as such (at a minimum) or replace them with more accurate/
consistent versions. Likewise, many analyses will require missing data to be filled in
with reasonable estimated values.

In terms of profiling, all types are required when building refined datasets. To ensure
the quality and consistency of individual record values, profiling at this level should
be aggressively applied across all record fields. Initially, for many fields, individual
value profiling will enforce little more than syntactic constraints because semantic
constraints on specific values will be unknown. As more and more ad hoc analyses
are completed, and a better understanding of the value of the underlying data
emerges, additional semantic profiling checks might be added. Similarly, as a deeper
understanding of the dataset emerges through its use in many analyses, the richness
of set-based profiling will increase. Initially, set-based constraints might enforce sim‐
ple range or loose distribution checks. Over time, expected correlations between
fields and trends in the changes of the distribution of field values (e.g., steady increas‐
ing of median sales prices) might be profiled and enforced.

It is difficult to overemphasize the criticality of building good refined datasets. From
a governance perspective, these datasets will be the source of most of the insights that
deliver value to you and your organization. The validity and consistency of these
insights will depend on the quality of your refined datasets. In no small way, the trust
an organization will have in the use of data to drive its decisions and operations will
depend on the quality of these refined datasets.

Ad Hoc Reporting
Starting from refined datasets, reporting primarily involves structuring (or restruc‐
turing) input data. Perhaps you are exploring the impact of changing region bound‐
aries and want to look at historical data to see if the new regions are more balanced in
terms of traffic, sales, costs, and so on. Many of the necessary data transformations
will involve pulling subcomponents out of record fields (for finer-grained analysis),
filtering out nonrelevant records, and aggregating or pivoting metrics around sub‐
groups of records. Additionally, depending on how your refined datasets are
designed, ad hoc reporting might involve enrichment transformations, as well. Rela‐
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tive to the raw data ingested in the prior stage, much of the enrichment focused on
joins and unions will already be done (though certainly not all). Beyond blending,
data wrangling for ad hoc reporting might also require the derivation of new data val‐
ues, perhaps involving the insertion of metadata like the current date, or calculating
complex values like arbitrary percentiles or winsorized averages.

Exploratory Modeling and Forecasting
Like ad hoc reporting that builds from refined datasets, exploratory modeling and
forecasting will employ a significant amount of structuring transformations. In addi‐
tion to filtering, aggregating, and pivoting of records, it is common to pivot categori‐
cal record fields into separate indicator fields. This enables modeling techniques like
regression. Furthermore, if your modeling analysis is focused on assessing the relative
importance of various record fields, the fields might need to be normalized so that
their corresponding model weights can be readily compared.

One of the benefits of exploring your data by using modeling and forecasting techni‐
ques is that these methods have the side effect of indicating when certain data points
(record field values, or, by extension, entire records) are outliers; that is, they appear
anomalous relative to the majority of the data. In some cases, these outlier data points
might contain inaccurate values, instigating some additional data wrangling efforts
focused on cleaning the data. In other cases, the outliers might represent valid data
points that necessitate a change in how you understand the data or the processes that
produce the data (e.g., most customers might spend only a few dollars per transac‐
tion, so if someone spends a few thousand dollars in a single transaction, what does it
mean?).

Beyond building a single model or forecast, it is useful in these exploratory efforts to
assess the robustness of the model or forecast—robustness relative to changes in the
values of the input data (record field values), robustness relative to missing or deleted
records, and so on. These kinds of robustness analyses involve transforming the orig‐
inal data (using structuring and cleaning type transformations) and then passing the
modified data through the modeling and forecasting engine.

Building an Optimized Dataset
Similar to designing and building refined datasets, designing and building an opti‐
mized dataset involves the breadth of transformation types—structuring, enriching,
and cleaning—and the breadth of profiling types—assessing both individual values
and sets of values. The primary difference is in the balance of transformation to
profiling. Whereas building refined datasets requires a fairly even mix of transforma‐
tion and profiling, building optimized datasets requires significantly more profiling.
It isn’t enough to ensure that the transformation logic is correct for the specific data‐
set you just created. The transformation scripts that generate optimized datasets need
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to be automatically applied to regularly updating input data. Hence, you must use
profiling to forecast the robustness of the transformation scripts to future variants of
the data as well as to track the correctness of the optimized data each time the scripts
are applied. Many of these profiling tasks will involve checking the distributions of
values for various subsets of records—assessing both the range of values in the sub‐
sets as well as the shape of the distribution of values.

Regular Reporting and Building Data-Driven Products and Services
Analogous to the similarities and differences between building refined versus opti‐
mized data, regular reporting (relative to ad hoc reporting) and data-driven product
and services (relative to exploratory modeling and forecasting) require similar trans‐
formations but more profiling. The driver for the additional profiling is the require‐
ment that the same transformation scripts should work efficiently and robustly across
evolving input data.

Figure 3-2 summarizes this section, highlighting the general amounts of different
types of transformation and profiling across the actions in our workflow framework.
In the figure, the bolded fonts represent the most frequently used transformation and
profiling tasks for each action.

In the next few chapters, we discuss how you can apply the specific types of transfor‐
mation and profiling actions to a sample data project.
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Figure 3-2. The relative amounts each type of transformation and profiling across the
actions in our workflow framework
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CHAPTER 4

Profiling

Overview of Profiling
We have decided to begin our discussion of data wrangling actions with profiling.
This is the first action that people generally undertake when beginning each stage of a
data project. Why? Because you need to understand the contents of your data before
you can begin transforming or analyzing that data. Fundamentally, profiling guides
data transformations.

When you’re working on a data project, you often don’t have time to look at every
field of every record. Profiling is the activity that helps you know what is “in” your
dataset, and allows you to validate that your transformations work as intended. Often,
profiling is used to assess the quality of your data. Profiling is also a crucial aid for
data transformation. You frequently need to be able to quickly determine if any
records contain data that might cause problems during the transformation process.
For example, if your downstream analysis expects each record in a price column to
contain numbers, you don’t want to have a record that includes letters or special char‐
acters.

Profiling can encompass two slightly different views:

• Examining individual values in your dataset
• Examining a summary view across multiple values in your dataset

Each of these views can often be consumed as textual information: a list of data val‐
ues, a table of summary statistics, and so on. You can also build visualizations to cap‐
ture profiling information about your data.

Ultimately, individual values profiling boils down to determining the validity of indi‐
vidual record field values. This type of profiling comes in two forms: syntactic checks
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and semantic checks. Syntactic constraints focus on formatting, and semantic con‐
straints are rooted in context. Set-based profiling attempts to determine the validity
of groups or distributions of values in a particular record field.

Beginning in this chapter, we will be working through an example data wrangling
project using publicly available US campaign finance disclosure files. We will be
wrangling candidate data and individual contribution data from the 2016 presidential
election. The goal of this project is to see if there are any trends in the campaign con‐
tributions received by each of the two major candidates, Hillary Clinton and Donald
Trump.

In each section, we reference the specific file that we are using so that you can follow
the discussion in your data wrangling tool of choice. You can download all of the data
files from http://www.fec.gov/finance/disclosure/ftpdet.shtml.

Individual Value Profiling: Syntactic Profiling
Syntax refers to constraints on the literal values that are valid in a field. The set of
valid syntactic values might be quite small and best represented in a list; for example,
Boolean values encoded as bits, {0, 1}, or birth sex encoded as English words, {male,
female}. More often, syntactic constraints represent fairly large sets of possible values.
For example, you might have a field that corresponds to the number of ATM cash
withdrawals a customer has made in her lifetime (as a customer of your bank) in
which the permissible values are integers ranging from 0 to 50000 (where the upper
limit is determined by the permissible number of ATM cash withdrawals per day
multiplied by the number of days your bank has been in business).

Profiling for syntactic constraints involves simply checking whether data values are in
(or not in) the set of permissible values. At the specific example levels, a good choice
for understanding syntactic type profiling is a random subset of values that satisfy the
syntactic constraints along with a random subset of values that do not satisfy the syn‐
tactic constraints. From these examples, you often can make reasonable decisions as
to whether a different syntactic type might be a better fit for a set of data.

Individual Value Profiling: Semantic Profiling
Semantic type constraints correspond to the meaning or interpretation of field values:
values are valid if their interpretations satisfy the constraints. For example, suppose
that a dataset has a field corresponding to the biological age, in years, of a customer.
For some customers, suppose that we don’t have a reported age, and the age field for
the records corresponding to these customers contains the value -1. Although syntac‐
tically not a valid age in years, semantically this value can be interpreted as a Boolean
indicator for whether or not the customer reported their age. Deriving a new field
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corresponding to reported age might be the variable we need to analyze how custom‐
ers’ willingness to report information predicts overall satisfaction.

As in the preceding example, the semantic interpretation of a field value might over‐
ride syntactic constraints. As another example, consider a field encoding hometown/
city. Suppose that some of the field values contain the strings “San Francisco, CA
USA” and “Sn Francisco, CA, USA” and “San Francicso, CA, USA.” While some of
these are syntactically invalid, they are semantically clear and could be converted to
their syntactically correct versions. Alternatively, suppose that the field values contain
the string “Moscow.” Should that be interpreted as Moscow, Russia, or Moscow, ID,
USA? Perhaps there are other fields in the records that could disambiguate between
these cases, but on their own, these values would be semantically invalid.

In other cases, the semantic interpretation of a field might involve a simple conver‐
sion from one categorical space to another; for example, age in years to basic life
stages (e.g., teenager, young adult, senior), or time of day to basic day stage (e.g.,
morning, afternoon, evening, and night).

Profiling semantic type constraints often requires deriving a new record field that
explicitly encodes the semantic interpretation of a source field. This explicit encoding
can then be syntactically typed, where validity can be determined by testing whether
the value is in the valid set. Thus, as with syntactic types, the most appropriate sum‐
mary statistics correspond to the percentage of field values that are valid, invalid, and
empty/null.

The common, and more straightforward, case uses deterministic rules for converting
a source field to its interpreted value. For example, you might define a rule stating
that anyone between the ages of 13 and 19, inclusively, is a teenager. The more diffi‐
cult case involves nondeterministic, or probabilistic, mappings from source values to
interpretations. For example, based on summary demographics that we know about
our dataset, we might interpret “Moscow” as 80 percent likely to represent Moscow,
Russia, and 20 percent likely to represent Moscow, ID, USA.

Set-Based Profiling
Set-based profiling focuses on the shape and extent of the distribution of values
found within a single record field or in the range of relationships between multiple
record fields. For numeric fields, distributional profiling often builds from a simple
histogram of the set of values and might involve comparing that histogram against a
known distribution like a Poisson or Gaussian probability distribution.

In addition to looking at the overall distribution, it helps to look at various summary
statistics like minimum, maximum, mean, and sum. These values can provide you
with an understanding of the distribution of values across your dataset and help you
to immediately identify any problematic distributions or outliers.
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For categorical record fields, a couple of different distributional profiles are useful.
The first counts occurrences of unique values. Another useful profiling chart for cate‐
gorical variables clusters the raw values, via a mechanism similar to standardization,
and then counts the number of values associated with each cluster.

For more specific types of record fields, there are more specific profiling charts. For
example, for geospatial data like zip codes or latitude-longitude coordinates, plotting
the data on a map is appropriate.

For date-time data, it is useful to see the values plotted on a variety of scales. You
could examine the distribution of date-time values across the 24-hour day, across the
7 days of the week, or across the 12 months of the year.

In addition to distributional profiling of the set of values from a single record field,
cross-distributional profiling of values from multiple record fields is often useful in
assessing the quality of the overall dataset. Simple scatterplots are commonly utilized.

Profiling Individual Values in the Candidate Master File
To follow along yourself, download the “Candidate Master File”
from election year 2015-2016.
You also might need to reference the data dictionary for this file to
understand the permissible values in each field. You can find the
data dictionary online.

As noted in the introduction to this chapter, we will be attempting to wrangle US
campaign finance data to build a refined dataset that will help answer the question:
“How were individual campaign contributions distributed between the two 2016
major party US presidential candidates?”

Profiling the available datasets is the first step toward constructing a refined dataset
that maps individual campaign contributions to each 2016 presidential candidate.
The profiling step is particularly important for this project because the data is largely
unknown. Data projects that use publicly available data often require a fairly lengthy
profiling process to familiarize yourself with the contents of the dataset.

To help the public understand the contents of these datasets, the US Federal Election
Commission (FEC) has provided a data dictionary to supplement the raw candidate
and contributions files. We can use the FEC’s data dictionary to inform our profiling
of individual values. If you examine the data dictionary, you can see the constraints
that define permissible values for each column in the dataset.
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Data dictionaries are frequently generated as the output of the
metadata-producing actions during the raw data stage. Data dic‐
tionaries define the permissible valid values in each column and
can also explain the contents of the dataset.

We’re going to begin by looking at the “Candidate Master File” for election year 2015–
2016. In case you’re not familiar with US election rules, this file contains information
about all of the candidates who filed the appropriate form to be included in an
upcoming election. It also includes candidates with active election committees, even
if the election that they have registered for is not the current election. As you examine
this file, you might also notice some creative candidate names; even though these
candidates submitted paperwork to be included in an election, they might not have
actually appeared on individual state ballots.

We want to use profiling to answer two specific questions:

• Are there any values in columns that are syntactically invalid given the scope of
our project?

• Is the range of values in each column valid given the scope of our project?

Syntactic Profiling in the Candidate Master File
Let’s begin by profiling the two US state columns. We want to assess whether the val‐
ues contained in those columns are syntactically valid. In the FEC’s data dictionary,
column 5 represents the state of the office for which the candidate is running, and
column 14 represents the state of the candidate’s mailing address.

Focusing on column 5, we can begin by collecting a list of all the unique values in the
column. This is a common first step when performing syntactic profiling. This opera‐
tion produces a list of 57 unique values. We know that there are 50 US states that have
voting representatives in the US Congress, and 5 US territories and the District of
Columbia with nonvoting representatives in the US Congress. Additionally, if we look
at the data dictionary, we can see that column 5 can contain a nonstate value, “US,” in
records that represent candidates who are running for president. So, at first glance, it
seems reasonable that there would be 57 possible syntactically valid locations in col‐
umn 5.

We can dig a little deeper and examine each value in column 5 individually to see if it
matches one of the known 50 state abbreviations, 6 territory abbreviations, or “US.”
We performed this check by using a lookup to a reference dataset of all 57 valid val‐
ues. In fields that matched one of the 57 valid values, we inserted a “1,” and in fields
that did not match one of the 57 valid values, we inserted a “0.” Ultimately, all the
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values in this column are syntactically valid; in our Boolean indicator column, 100
percent of the records contained “1.”

Because column 14 also contains state abbreviations, we can perform a similar set of
profiling checks on this column. Again, a count of all the distinct values in this col‐
umn reveals that there are 57 possible values. However, because this column repre‐
sents a mailing address, there are only 56 possible valid values: 50 US state
abbreviations, “DC” for the District of Columbia, and 5 US territory abbreviations. At
first glance, we can assume that at least some of the records contain syntactically
invalid entries in column 14. In addition to 57 distinct values, this column also con‐
tains missing values. We can consider missing values syntactically invalid because the
data dictionary does not indicate that missing values should appear in this column.

We’ll use the same procedure that we applied when profiling column 5 to see which
of the individual values in column 14 are syntactically valid. Performing a lookup to a
reference table and generating a Boolean indicator column shows that there is a sin‐
gle record that contains an erroneous state: “ZZ.”

You can perform a similar set of syntactic checks on the other columns in the Candi‐
date Master File. We recommend generating a series of Boolean indicator columns to
show whether the values in each record are permissible given the constraints defined
in the FEC’s data dictionary.

Set-Based Profiling in the Candidate Master File
Let’s profile the distribution of values in column 4 of the Candidate Master File.
According to the data dictionary, this column represents the year of the election for
which each candidate registered. Since this dataset can include candidates for any
election with active campaign committees, we would expect to see the years dis‐
tributed so that there are relatively few records for elections prior to 2016, a large
number of records for the 2016 election year, and possibly a small number of records
that represent future elections (perhaps 2018 or 2020).

After you’ve generated a summary view that counts the number of records that occur
in each year, you should see a very wide range of values in column 4. The earliest
recorded date is 1990; the date farthest in the future is 2064.

At this point, we would recommend stepping back to determine the utility of records
in this column. If you remember our discussion in Chapter 2, assessing the utility of
your data involves generating custom metadata, or metadata specific to your use case.
That means that we should assess the distribution of the values in column 4 in the
context of our specific project to see how many of these records are relevant to our
analysis. The goal of this project is to see if there are any trends in the campaign con‐
tributions received by each of the two major candidates in the 2016 presidential elec‐
tion, Hillary Clinton and Donald Trump. Since we’re interested in only the 2016
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presidential election. records that represent candidates registered for the elections in
1990 or 2064 are ultimately irrelevant to our task. We can insert additional metadata
into our dataset at this stage, perhaps flagging records that contain a value other than
“2016” in column 4 as invalid.

You can profile the values in column 6 of the Candidate Master File in a similar way.
This column represents each candidate’s desired office. Based on our project’s con‐
straints, attempt to make an assessment about the utility of each category of values in
this column.
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CHAPTER 5

Transformation: Structuring

Overview of Structuring
You might remember our discussion of structure as a metadata element from Chap‐
ter 2. Structuring as a transformation action involves changing your dataset’s struc‐
ture or granularity. In other words, structuring consists of any actions that change the
form or schema of your data.

At a high level, there are two sets of structuring actions that you might need to apply
to your datasets. The first group of structuring transformations involves manipulat‐
ing individual records and fields. We call this intrarecord structuring. Intrarecord
structuring transformations roughly fall into three buckets:

• Reordering record fields (moving columns)
• Creating new record fields through extracting values
• Combining multiple record fields into a single record field

The second group of structuring transformations involves operating on multiple
records and fields at once. We call this interrecord structuring. These types of transfor‐
mations fit roughly into two types:

• Filtering datasets by removing sets of records
• Shifting the granularity of the dataset and the fields associated with records

through aggregations and pivots

We will discuss each set of structuring transformations in turn so you can understand
when you might want to apply these operations to your datasets.
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Intrarecord Structuring: Extracting Values
Extraction involves creating a new record field from an existing record field. Fre‐
quently, this involves identifying a substring in an existing column and placing that
substring into a new column.

Positional Extraction
The simplest form of substring extraction works by specifying the starting position
and ending position that correspond to the substring that you want to extract from a
set of record fields. This is called positional extraction.

When you’re working with data, extracting substrings based on a consistent position
is common when dealing with date-time fields or fixed-width fields. Both of these
field types have known elements located at specific positions, so there is generally lit‐
tle to no inconsistency in the structure of the field.

To follow along yourself, download the “Contributions by Individ‐
uals” file from election year 2015-2016. You can find the file at
http://www.fec.gov/finance/disclosure/ftpdet.shtml#a2015_2016.
You also might need to reference the data dictionary for this file to
understand the permissible values in each field. You can find the
data dictionary at http://www.fec.gov/finance/disclosure/metadata/
DataDictionaryContributionsbyIndividuals.shtml.

Let’s look at an example of a field for which positional extraction might be a valuable
structuring technique. In the Individual Contributions dataset, column 14 contains
the transaction date for each campaign contribution. In this example, we want to
extract the day of the month for each individual contribution into a new column.
This will allow us to create a field that we can use to determine if individual campaign
contributions were more frequent in certain times of the month.

The following table shows four example record fields from column 14:

column14
03102015

03302015

03302015

03022015
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If you look at the source data, you can see that the discrete elements of the field
always align: the month occurs first, the day of the month follows after exactly two
characters, and the year follows after exactly four characters. Each individual record
field is homogeneously structured. This means that positional extraction will allow us
to easily identify the block of text that represents the month of the contribution.

To identify the starting and ending positions of the substring that represent the day of
the month, we can map each individual character in the source record field to a posi‐
tion. You can see how this will work here:

0 3 1 0 2 0 1 5
Position 1 2 3 4 5 6 7 8

By counting the individual characters, including spaces, we can see that the day of the
month starts at position 3 and ends at position 4.

In a sentence, we could describe our desired transformation by saying, “From source
column 14, extract the characters located from position 3 to position 4.” If we were to
perform this transformation on the dataset, we would produce the following output:

column14 Day of Month
03102015 10

03302015 30

03302015 30

03022015 02

A more complex version of positional substring extraction can pluck a substring
from a record field when the starting and ending positions of the substring differ
from record to record. Address fields are an excellent example of record fields for
which complex positional extraction can be utilized effectively.

To perform this type of positional extraction, you will want to use functions that can
search for a particular sequence of characters within the original record field. These
functions return either the start position of the searched-for sequence or the length of
the sequence. You can then pass the values returned by these functions through to
one of the basic positional extraction functions. This will produce a complex nested
function.

Looking again at the Individual Contributions dataset, you can see that column 8
contains the name of the person or organization who made each campaign contribu‐
tion. For records that represent individual people, commas separate the person’s first
name and last name. A sample of data from column 8 is shown here:
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column8
ARNOLD, ROBERT

BICKLE, DON

ROSSMAN, RICHARD

LLEWELLYN, CHARLES

You can see that the last name element has an inconsistent length in each record. In
the first record, the last name is 6 characters long (ARNOLD), whereas in the third
record, the last name is 7 characters long (ROSSMAN). Simple positional extraction
would not work in this case because the ending positions of the last name differ from
record to record. However, because the first name and last names in each record are
all separated by a common delimiter—the comma—we can use complex positional
extraction functions to identify the position of the comma and then extract the
appropriate substring.

Pattern Extraction
Pattern-based extraction is another common method that you can use to extract sub‐
strings into a new column. This method uses rules to describe the sequence of charac‐
ters that you want to extract. To explain what we mean, let’s look at another sample of
data from the Individual Contributions dataset. According to the FEC’s data dictio‐
nary, column 20 contains free text that describes each contribution. A sample of data
from this column is below:

column20
P/R DEDUCTION ($296.67 MONTHLY)

P/R DEDUCTION ($326.67 MONTHLY)

* EARMARKED CONTRIBUTION: SEE BELOW

P/R DEDUCTION ($1000.00 MONTHLY)

In this case, we want to extract the monthly contribution amount into a new column.
It’s fairly easy to describe the desired transformation in a sentence: “From column 20,
extract the first sequence of digits, followed by a period, followed by another
sequence of digits.” In this sentence, the pattern that defines the street name reads,
“first sequence of digits, followed by a period, followed by another sequence of digits.”
You can often use regular expressions to represent patterns in code. Regular expres‐
sions are also supported by most data wrangling software products.

As you can see, pattern-based extraction can be a useful method to identify substrings
that conform to the same generic pattern but are not identical.
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Complex Structure Extraction
Sometimes, when you are wrangling data, you might need to extract elements from
within complex hierarchical structures. We commonly see this type of complex struc‐
ture extraction required when wrangling JSON files or other semistructured formats.
(You can refer to our discussion of structure in Chapter 2 for a refresher on the differ‐
ences between structured and semistructured data.) JSON-formatted data often origi‐
nates from automated systems; if you are working with machine-generated data, it’s
likely that your data contains JSON structures.

Users who are wrangling JSON data generally encounter two types of complex struc‐
tures: maps and arrays. These structures are common in semistructured data because
they allow datasets to include a variable number of records and fields. They are
described here:

JSON array
A JSON array represents an ordered sequence of values. JSON arrays are
enclosed in square brackets. Elements in arrays are separated by commas and
enclosed in double quotes.

Example array: [“Sally”,”Bob”,”Alon”,”Georgia”]

JSON map
A JSON map contains a set of key-value pairs. In each key-value pair, the key rep‐
resents the name of a property and the value represents the value that describes
that property. JSON maps are enclosed in curly brackets. Key-value pairs are sep‐
arated by commas. Keys and values are both enclosed in double quotes.

Example map: {“product”:”Trifacta Wrangler”,”price”:”free”,”category”:”wrangling
tool”}

In a given dataset, an array in one record might be a different length from an array in
another record. You might see this in a dataset containing customer orders, where
each record represents a unique customer’s shopping cart. In the first record an array
of orders might include two elements, whereas in the next record, an array of orders
might include three elements.

Similarly, maps also support variability across records. Looking at the shopping cart
example, each cart might contain a variety of possible properties—say, “gift_wrapped”,
“shipping_address”, “billing_address”, “billing_name”, and “shipping_name”. Ideally,
every record will contain all of the possible properties. However, it’s more likely that
some shopping carts only contain a subset of possible properties. Representing the
properties and their associated values in a JSON map allows us to avoid creating a
very sparsely populated table.

Of course, JSON format, although ideal for storing data efficiently, is often not struc‐
tured ideally for use in analytics tools. These tools commonly expect tabular data as
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input. Consequently, when working with a JSON array or map, you might need to
pluck a single element into a new column, or fold the multiple elements contained in
an array down into multiple records. This will allow you to convert JSON-formatted
data into the rectangular structure needed for downstream analytics.

When to Use Each Substring Extraction Technique
Simple positional extraction

Use this when each record field conforms to a known structure, and each unique
substring in the field always begins and ends at the same position. Fixed-width
fields and date-time fields are good candidates for positional extraction.

Complex positional extraction
Use this when each record field contains multiple substrings that are separated by
the same delimiter string. Substrings do not necessarily need to be the same
length or conform to the same pattern. Address fields and full name fields are
good candidates for complex positional extraction.

Pattern-based extraction
Use this when you want to extract a substring that can be defined by a generic
pattern.

Complex structure extraction
Use this when your record fields contain JSON maps or arrays, and you want to
extract individual elements from those structures. Many datasets that are
machine-generated contain complex JSON structures.

Intrarecord Structuring: Combining Multiple Record Fields
Combining multiple fields is essentially the reverse of extraction. When you are
wrangling data, you might need to create a single field that merges values from multi‐
ple related fields.

As an example, let’s return to the Individual Contributions dataset. This dataset con‐
tains two related columns: column 9 (city) and column 10 (state).

You can see that the city column adds additional detail to the state column. We want
to combine the data from these two columns into a single column, and then separate
the city and state with a comma. Combining the data from the these two fields can be
useful if your downstream analysis wants to consider this data as part of a single
record field.

Our desired output will look like the following column:
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City State
MCPHERSON, KS

FREDERICK, MD

BROKEN BOW, NE

HAWTHORNE, CA

Interrecord Structuring: Filtering Records and Fields
Filtering involves removing records or fields from a dataset. Although filtering is
often utilized in cleaning transformations designed to address dataset quality (which
we discuss further in Chapter 7), you also can use it to alter the granularity of a data‐
set by changing the types of records and fields represented in a dataset.

For example, the Individual Contributions dataset contains a column that represents
the type of entity that made each donation. Based on the FEC data dictionary, this
field contains eight distinct values: CAN, CCM, COM, IND, ORG, PAC, and PTY.
Based on this column, we could say that the granularity of the dataset is fairly coarse.
After all, records can belong to one of eight distinct groups.

Let’s assume that we are interested in analyzing only campaign contributions that ori‐
ginated from individuals (represented in the entity column by “IND”). We will need
to filter our dataset so that it includes records that contain only the value “IND” in
column 7. Performing this operation will produce a dataset with a finer granularity
because each record will now belong to only a single category of values from the
entity type column. This type of filtering is called record-based filtering.

Another type of filtering that is commonly used as a structuring operation is field-
based filtering. This type of filtering affects the number of fields, or columns, in your
dataset.

Interrecord Structuring: Aggregations and Pivots
Aggregations and pivots are structuring operations that enable a shift in the granular‐
ity of a dataset. For example, you might start with a dataset of sales transactions and
want total sales amounts by week or by store or by region—a fairly straightforward
aggregation involving the summation of record fields. A more complex pivot might
involve extracting the items purchased out of the transaction records and building a
dataset in which each record corresponds to an item.

For example, consider a dataset composed of individual sales transactions, where
each transaction record contains a field listing the products that were purchased. You
can pivot this dataset such that each product becomes a record with fields describing
the product and an aggregated count field indicating the number of transactions
involving this product. Alternatively, you could pivot the same dataset to count the
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number of transactions per product where the product was purchased alone, with
one additional product, with two additional products, and so on.

To coordinate our discussion in this section, we can organize aggregations and pivots
into three progressively more complex groups. These groups can be characterized by
the relationship between records and record fields between the input dataset (prior to
applying the transformation) and the output dataset.

Simple Aggregations
In the first group, simple aggregations, each input record maps to one and only one
output record, whereas each output record combines one or more input records. For
simple aggregations, the output record fields are simple aggregations (sum, mean,
min, list concatenation, etc.) of the input record fields.

We can perform a basic aggregation on the Individual Contributions dataset. Perhaps
we want to manipulate the granularity of the dataset so that each row summarizes the
campaign contributions made to each campaign committee. We are interested in cre‐
ating three new columns:

• One column that contains the average contribution made to each campaign
committee

• One column that contains the sum of contributions made to each campaign
committee

• One column that counts the number of contributions made to each campaign
committee

In this example, we will be performing this basic aggregation on the following limited
sample of data from the Individual Contributions dataset:

Column 1 Column 15
C00004606 750

C00004606 1000

C00452383 225

C00452383 50

Remember, based on the FEC’s data dictionary, column 1 contains the campaign
committee and column 15 contains each contribution amount. After aggregating the
values in column 15 by campaign committee, we end up with the following output:

Column 1 Sum of Column 15 Mean of Column 15 Count of Column 15
C00004606 1750 875 2

C00452383 275 137.50 2
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Column-to-Row Pivots
In the second group, column-to-row pivots, each input record maps to multiple out‐
put records, and each output record maps to one and only one input record. Input
record field values become the defining characteristics of the output records. In other
words, the output records contain a subset of the input record fields.

This type of column-to-row pivot is commonly referred to as “unpivoting” or
“denormalizing” data. It is particularly useful when your source data contains multi‐
ple columns that represent the same type of data. For example, you may have a trans‐
actions file that contains the total sales numbers per region, per year. The data could
be formatted as shown in the following table:

Region 2015 2016
East 2300 2453

West 9866 8822

Midwest 2541 2575

Note that in this example, the sales figures for each year are contained in a different
column. We want to restructure this dataset so that a single row contains the sales for
a single unique combination of region and year. The result of this column-to-row
pivot will look like the following table:

Region Year Sales
East 2015 2300

East 2016 2453

West 2015 9866

West 2016 8822

Midwest 2015 2541

Midwest 2015 2575

Generally, column-to-row pivots are used when you want to create a dataset that
allows you to more easily summarize values. Compared to the original sales dataset in
our example, the resulting dataset is structured to facilitate calculations across years
and regions.

Row-to-Column Pivots
In the final group, output records sourced from multiple input records and input
records might support multiple output records. Output record fields might involve
simple aggregations (e.g., sum or max) or involve more complex expansions based on
the field values. This type of pivot is called a row-to-column pivot.
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As an example, let’s return to the Individual Contributions dataset. We want to create
a refined dataset that shows the sum of contributions made to each campaign com‐
mittee, broken out by contribution type. In this case, we want to create one new col‐
umn for each contribution type.

A subset of the Individual Contributions dataset contains the following data:

Column 1 Column 7 Column 15
C00004606 IND 750

C00004606 IND 1000

C00492116 PAC 45000

C00492116 PAC 15000

C00492116 IND 250

C00452383 750 50

Based on the FEC’s data dictionary, column 1 represents the campaign committee,
column 7 represents the contribution type (individual, political action committee,
corporate, and so on), and column 15 represents the contribution amount. After per‐
forming a row-to-column pivot, our subset of the Individual Contributions dataset
will look like the following table:

Column 1 Sum of IND Contributions Sum of PAC Contributions
C00004606 1750 0

C00492116 60000 1000

As a result of the row-to-column pivot, we have created a new column for each of the
unique values in source column 7. Each row in this new dataset summarizes contri‐
butions made to a single campaign committee.
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CHAPTER 6

Transformation: Enriching

Enriching transformation actions result in the net addition of information to your
dataset. When enriching your dataset, you insert additional records or fields from
other related datasets, or you use formulas to calculate new fields.

You might wonder how enriching transformations differ from structuring transfor‐
mations (discussed in Chapter 5). Although both types of transformations can
involve creating new fields or records, structuring transformations create new fields
or records based on data already present in the dataset. Enriching transformations, in
contrast, create new fields or records using new data—information that was not pre‐
viously present in the dataset in any form.

There are three primary types of enriching transformations:

• Unions
• Joins
• Deriving new fields

We discuss each type of enriching transformation in this chapter.

Unions
Unions append additional records to an existing dataset. In other words, when you
perform a union, you are taking two related datasets and stacking them vertically to
create a single dataset.

Why might you want to perform a union? Let’s imagine that you work for an organi‐
zation that receives monthly orders from your clients. At the end of each quarter, you
need to produce a summary analysis that records the total number of orders placed
by each client over the previous three months. Because each month’s orders are
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contained in a separate dataset, you need to combine them into a single dataset so
that you can perform your analysis.

The simple case is when records from both the old and new datasets have matching
structures (i.e., matching layout of fields for each record). In this case, a union
amounts to little more than a concatenation of datasets.

The more complex—and common—case is when the records from the current data‐
set have a different structure from the records in the new dataset. Generally, the dif‐
ference is minor: most of the fields are in the same layout and there are only a few
fields that differ between the old and new data records. In this case, some simple logic
can dictate whether the unmatched fields should be coerced into the same field or
kept in separate fields with null or empty values inserted into the records from the
other dataset.

Joins
Joins are the most common enrichment action. The most common form of a join
involves linking records from one dataset to records from the other dataset via exact
matches of a single field in each of the dataset records. The field used in the match is
often referred to as the key field in both datasets. For example, consider a dataset con‐
taining customer profile information with a key field corresponding to a cus‐
tomer_id. In a second dataset, suppose that we have customer transaction
information along with a customer_id key field. By joining records on customer_id
matches, we can now analyze how transaction activity relates to profile information.

In most tools, the link between two datasets is based on exactly matching one or more
fields between the records. Some tools additionally support fuzzy matching of fields.
This allows records with misspellings or other minor differences to be linked.

There are four types of joining/blending logic. They differ in how they handle the
variety of situations that arise when matching records for the two datasets. Obviously,
when records match from the joining datasets, we simply append record fields (or a
subset of records fields). It is common to think about the case in which every record
from each dataset has one and only one matching record in the other dataset. What
happens when a record from one dataset matches multiple records from the other
dataset? Or when records from one dataset have no matching records from the other
dataset?

Let’s take a closer look at the four types of joins:

Inner
Inner joins only produce a record when there are matching records from each
dataset being blended. Note that if there are duplicate keys, the output records
are similarly duplicated.
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Left outer
This type of join retains all records from the left (or initial) dataset, even if there
is no matching record in the right (or incoming) dataset.

Right outer
These joins retain all records from the right (or incoming) dataset, even if there is
no matching record in the left (or initial) dataset.

Full outer
Full outer joins retain all records from both datasets, even if they have a corre‐
sponding match.

Inserting Metadata
An important form of enrichment involves adding metadata into the dataset. Com‐
mon metadata to add include the filenames of the source data, byte offsets and/or
record numbers, current date and/or time, creation/update/access timestamps, and
record and/or record field lineage.

Derivation of Values
A final kind of enrichment involves the derivation of new values. There are two basic
kinds of derivation: generic and proprietary.

Generic
Generic derivations apply to many datasets. For example, most datasets need to
explicitly address time—either by encoding temporal information within records or
across records as metadata. A common data wrangling action involves deriving addi‐
tional date-time information; for example, day of the week or season. Or, when data is
collected across multiple time zones, it can be useful to derive both a local and global
(e.g., UTC) timestamp for each event. These derived values can be crucial to an anal‐
ysis that deals with weekly or yearly cycles, experiential time, and absolute sequencing
of events (e.g., for anomaly detection).

Another common domain for many analyses involves geography or spatial encod‐
ings. Sometimes, it is as simple as abstracting an address into a ZIP code or city. Or,
utilizing many available services, you could also convert an address to latitude and
longitude coordinates. Slightly more involved derivations might convert an address to
a more customized region relevant for marketing or sales activity. These regions
might be drawn, for example, by calculating the shortest driving distance between a
customer and all available nearby stores. None of the three data wrangling tools sup‐
port geographic and spatial encodings; you would need to create custom code to pro‐
duce these features.
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A third generic domain for derivation functionality concerns text. Generally referred
to as Natural Language Processing, or NLP, functionality in this domain could take
raw text and derive some kind of overall sentiment analysis; extract out references to
people, events, or things; or identify topics that capture the text’s semantics. You
might also want to translate text from one language to another. When it comes to
NLP, a key concern is what defines your baseline, or reference language; for example,
are you working with only English text, or are you working with terminology specific
to your industry? Choosing an appropriate reference language will determine how
you treat jargon or slang, for example.

Finally, a fourth generic domain for derivation functionality concerns basic numeric
calculations. Some of these calculations are simple; for example, summing the list
price and taxes of a transaction to produce a final price. Others are slightly more
sophisticated, utilizing aggregation or sequential processing mechanisms. An exam‐
ple would be z-normalizing a numeric field by subtracting the mean value of the field
and then dividing by the standard deviation of the field.

Some of the generic derivation functionality is domain specific. For example, you
might have different region definitions if you are a mining company versus a con‐
sumer packaged goods retailer. Similarly, if you are performing NLP derivations, you
can target jargon or terminology specific to your industry (like silicon manufactur‐
ing, pharmaceuticals, fashion, etc.).

Legal requirements around report compliance and privacy drive additional domain-
specific derivations. For example, in the healthcare domain, laws pertaining to patient
privacy and confidentiality require certain record fields to be removed and replaced
with derived ones. Also, given a history of treatments, one might derive record fields
indicating whether certain future treatments are viable or not. Similarly, in finance,
there are domain-specific derivations related to the time series of transaction data
that drives that industry. Specific models, such as Black-Scholes, can be applied to
historical time series of trading data to predict future value. These predictions can be
analyzed along with other predictions to identify the optimal model to use or to build
a composite prediction.

Proprietary
Further along the generic-to-specific spectrum are proprietary derivations. In this
case, individual organizations might have custom models they use to make predic‐
tions, for example. Or, they might have highly customized derivation calculations that
best capture, for example, the health of their customer base or the likelihood of a cus‐
tomer leaving or upgrading.

In many big-data data wrangling systems, proprietary functionality is often encoded
as User-Defined Functions (UDFs). Moreover, these UDFs are often supported in a
variety of computational languages: R, Python, VisualBasic, Java, and so on. Whereas
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many UDFs contain nontrivial calculations, others make calls to services (like Goo‐
gle’s geocoding API, which converts addresses to latitude and longitude coordinates).
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CHAPTER 7

Using Transformation to Clean Data

The third type of data transformation cleans a dataset to fix quality and consistency
issues. Cleaning predominately involves manipulating individual field values within
records. The most common variants of cleaning involve addressing missing (or
NULL) values and addressing invalid values.

Addressing Missing/NULL Values
There are two basic approaches to addressing missing/null values. On the one hand,
you can filter out records with missing or NULL fields. On the other hand, you can
replace missing or NULL values. Often referred to as data imputation, filling in miss‐
ing or NULL values might utilize many different strategies. In some cases, the best
approach involves inserting the average or median value. In other cases, it is better to
generate values from similar records; for example, similar customers or similar trans‐
actions. Alternatively, if your data has strong ordering (because it is a time-series
dataset, for example), you might be able to fill in missing values by using the last valid
value.

Addressing Invalid Values
Extending beyond missing values, another key set of cleaning transformations deals
with invalid values—invalid because they are inconsistent with other fields (e.g., a
customer age compared with their data of birth), ambiguous (e.g., two-digit years or
abbreviations like “CT”—is that Connecticut or Court?), or improperly encoded. In
some cases, the correct or consistent value for the field can be calculated and used to
overwrite the original value in the dataset. In other cases, it might make sense for you
to simply mark values as invalid. You can then conduct two parallel analyses, one that
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includes the invalid values and one that excludes them, providing insight into the
impact that invalid data is having on your insights.

A more complex variety of fixing invalid values involves data standardization. Fur‐
thermore, suppose that every customer represented in that dataset is known to reside
in the United States. A reasonable validity check on the current-state-of-residence
field is that it should fall into one of the known US states. Suppose, however, that
there are misspellings: “Californa,” “Westvirginia,” and “Dakota.” Standardizing these
field values to a fixed library of valid values is a good way to improve dataset quality.
There are a number of ways to perform this kind of standardization. The most com‐
mon method involves editing distance around misspelling; that is, strings that are
similar, like “Californa” and “California,” should be treated as the same entity and
converted to the same spelling.

More specific standardization techniques rely on domain knowledge. For example, is
“Dakota” supposed to be “North Dakota” or “South Dakota”? If we have a ZIP code in
another field of the record, perhaps we can use a mapping of ZIP codes to states to
make this determination. A slightly less reliable mapping, now that cell phone num‐
bers can be transferred across carriers, could use the area code on a customer phone
number field.
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CHAPTER 8

Roles and Responsibilities

There are a number of common job titles and roles for people who work with data. In
our experience, the most common are data engineer, data architect, data scientist, and
analyst. In this chapter, we provide a general overview of each of these roles, which
actions in the workflow they tend to be responsible for, and some best practices for
managing the hand-off between these roles and for driving the long-term success of
your data practices.

Skills and Responsibilities
We’ll provide a basic overview of the four common job roles that we encounter when
working with data. Of course, in smaller organizations or in personal projects, a sin‐
gle person can end up developing and applying all of the skills and responsibilities
that we’ll discuss. However, it’s more common to split them into separate job roles.

Our discussion is oriented on two axes (see Figure 8-1). The first axis is focused on
the primary kind of output produced by someone in the role. The second axis is
focused on the skills and methods utilized to produce that output. We’ll discuss each
role in turn.
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Figure 8-1. Relative positions of the four key data wrangling user profiles based on out‐
put (internal or external) and skills (technically focused or business focused)

Data Engineer
Data engineers are responsible for the creation and upkeep of the systems that store,
process, and move data, as shown in Figure 8-2. In addition to instantiating and
maintaining these systems, many data engineers focus on the efficiency and extensi‐
bility of these systems, ensuring that they have sufficient capacity for existing and
exploratory or future workloads.

Figure 8-2. Blue highlights identify the primary actions for a data engineer in our data
wrangling workflow framework

The ability to create and maintain these systems requires some background in system
administration. More importantly, as these systems are primarily designed to work
with data, data engineers require fairly deep background in common data processing
algorithms and implementation of these algorithms across various systems and tools.
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Data Architect
As Figure 8-3 illustrates, data architects are responsible for the data in the “refined”
and “production” stage locations (occasionally they are responsible for the “raw” data,
as well). Their objective is to make this data accessible and broadly usable for a wide
range of analyses. In addition to staging the data itself, data architects often create
catalogs for this data to improve its discoverability and usability. Further optimiza‐
tions to the data and the catalog involve the creation of naming conventions and stan‐
dard documentation practices, and then applying and enforcing these practices.

Figure 8-3. Red highlights identify the primary actions for a data architect in our data
wrangling workflow framework

In terms of skills and methods, data architects often work through a user-
requirements-gathering process that moves from documented data needs and
requests, to an abstract model of where to source the data and how to organize it for
broad usability, to the concrete staging of the data by designing data schemas and
alignment conventions between the schemas. Designing the structure, ensuring the
quality, and cataloging the relationships between these dataset builds on fluency in
the data access and manipulation languages of a broad set of data tools and ware‐
houses (e.g., variants of SQL, modern tools like Sqoop and Kafka, and more analytics
systems like those built by SAP and IBM). Additionally, data architects often employ
standard database conventions like First, Second, and Third Normal Forms.

Data Scientist
Data scientists are responsible for finding and verifying deep or complex sets of
insights (Figure 8-4). These insights might derive from existing data using advanced
statistical analyses or from the application of machine learning algorithms. In other
cases, data scientists are responsible for conducting experiments, like modern A/B
tests. In some organizations, data scientists are also responsible for “productionaliz‐
ing” these insights.
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Figure 8-4. Orange highlights identify the primary actions for a data scientist in our data
wrangling workflow framework

There are two primary types of data scientists: those who are more statistics focused
and those who are more engineering focused. Both are generally tasked with finding
deep and complex insights. Where they differ is in the last couple of just-listed
responsibilities. In particular, more statistics-focused data scientists will often focus
on A/B testing, whereas those who are more engineering-focused will often concen‐
trate on prototyping and building data-driven services and products.

The ability to identify and validate deep or complex insights requires some familiarity
with the mathematics and statistics algorithms that can reveal and test these insights.
Additionally, data scientists require the skills to operate the tools that can apply these
algorithms, such as R, SAS, Python, SPSS, and so on. For statistics-focused data scien‐
tists, background in the theory and practice of setting up and analyzing experiments
is a common skill. For engineering-focused data scientists, skills around software
engineering are required, not just familiarity with a variety of programming lan‐
guages, but also with best practices around building complex applications.

Analyst
Analysts are responsible for finding and delivering actionable insight from data, as
depicted in Figure 8-5. Whereas data scientists are often tasked with exploratory,
open-ended analyses, analysts are responsible for providing a business or organiza‐
tion with critical information. In some cases, these take the form of top-line metrics,
KPIs, to drive or orient the organization. Sometimes these metrics are delivered in
reports (both regular and ad hoc); other times they are delivered as general talking
points to help justify a decision or course of action. The line between an analyst and a
data scientist can be blurry. In many situations, analysts will pursue deeper analysis.
For example, in addition to identifying correlated indicators of KPI trends, they
might perform causal analysis on these indicators to better understand the underlying
dynamics of the system.
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Figure 8-5. Green highlights identify the primary actions for a data analyst in our data
wrangling workflow framework

Along those lines, in addition to good mathematics and statistics backgrounds, ana‐
lysts are often steeped in domain expertise. For most organizations, this amounts to a
deep understanding of the business and marketplace. More generically, analysts are
strong systems thinkers; they are able to connect insights that might be corelevant
and then propose ways to measure the extent of their relationships.

Roles Across the Data Workflow Framework
The workflow framework we described in Chapter 2 is comprised of the following
actions:

1. Ingesting data
2. Describing data
3. Assessing data utility
4. Designing and building refined data
5. Ad hoc reporting
6. Exploratory modeling and forecasting
7. Designing and building optimized data
8. Regular reporting
9. Building products and services

Data engineers, with their focus on data systems, generally drive the data ingestion
and data description in the raw data stage. Analysts, who possess the requisite busi‐
ness and organizational knowledge, are often responsible for generating proprietary
metadata. In some organizations, for which the data is particularly complex or messy,
the generation of metadata might also be the responsibility of data scientists.
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Moving to the refined data stage, data architects are often responsible for design and
building the refined datasets. Data engineers might be involved if the data storage and
process infrastructure requires modification and monitoring to produce the refined
datasets. With the refined datasets in hand, analysts are typically responsible for ad
hoc reporting, whereas data scientists focus on exploratory modeling and forecasting.

The production data stage parallels the refined data stage. Data architects and data
engineers are responsible for designing and building the optimized datasets. Analysts,
with the help of the data engineers, drive the reporting efforts. Data scientists, also
with the help of data engineers, work to deliver the data for products and services.

Though we have been selective in our associations between job roles and actions, the
reality of most organizations is that people help out wherever they can. Although data
engineers typically have the deepest data systems knowledge, data architects the best
data cataloging and design knowledge, analysts the most comprehensive domain
understanding, and data scientists the deepest statistics and machine learning back‐
ground, these skills are exclusive and many data projects can be sufficiently pro‐
gressed with cursory knowledge of some of these areas.

Organizational Best Practices
In the remainder of this chapter, we discuss some best practices for coordinating the
efforts across these job roles. These best practices come from a combination of our
own efforts to wrangle data efficiently and from our observations of how high-
functioning organizations manage their data projects.

Perhaps the most important best practice is providing wide access to your data. Of
course, we are not suggesting that you provide broad access to overwrite capabilities.
Rather, within of legal boundaries, everyone in your organization should have the
ability to analyze the data you have. Per our discussion of driving broad data-driven
value creation, your organization will benefit from opening-up access and allowing as
many people as possible to find valuable insights. This initiative is more popularly
referred to as data democratization or self-service data analytics. Some argue against
wider access to data on the grounds that the infrastructure to support it is costly (we
have seen that the generated value more than compensates for the additional costs)
and that people will often find conflicting insights (which can slow down the organi‐
zation while you sort them out). For this last concern, we offer two suggestions. First,
build robust refined datasets and drive the majority of your analytics efforts to source
from them. This will mitigate superficial conflicts. Second, embrace the remaining
conflicts and build practices that address them directly. With superficial conflicts
minimized, the conflicts that remain should largely represent different views on how
to measure or interpret the data. It is to the benefit of your organization to uncover
these differing perspectives and to find constructive ways to coordinate them. Robust
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1 Published at the Neural Information Processing Systems (NIPS) conference in 2015.

insights will survive these interrogations, and your organization should trust its use
in making decisions and driving operations more as a result.

Summary of Organizational Best Practices for Data Projects
The following list includes related best practices for data projects:

• Provide wide access to data
• Implement mechanisms to track data usage
• Use a common data manipulation language that spans business units and user

roles
• Maintain a system that allows you to easily transition from development to

production
• Consider a rotation program across roles to enable a cleaner hand-off and

increase cross-functional trust

In conjunction with providing wider access to your data, you should implement
mechanisms that can track the use of your data. This will improve your ability to
resolve conflicting insights. It will also help you to determine the cost benefits of
altering your refined datasets (e.g., by adding a dataset that many people are using,
but sourcing from the raw stage; or by adding additional blended datasets used by
many analyses). As your organization relies more and more on complex data enrich‐
ments resulting from inferences or predictions (e.g., you might regularly predict the
likelihood that a customer will churn, and then use this churn prediction value to
drive business operations), the ability to track the movement of your data will
become critical to enhancing or protecting the utility of the inferences and predic‐
tions. In particular, the inferred values will begin to shift the operations of the organi‐
zation, which will shift the data that is collected. As the data shifts, it is shifting, in
part, relative to the inferences. However, if the inference-producing logic assumed
that the data did not have this feedback aspect to it, the inferences might become
inaccurate or biased over time. These, and related issues, are discussed in Scully et al.,
Hidden Technical Debt in Machine Learning Systems paper.1

Building on the idea of providing wider access to your data is finding a common data
manipulation language for everyone to use. This is critical to support collaboration
on analyses. At a minimum, people who want to work together on the same analysis
need to share the basic tools of the analysis. Over time, people picking up old analy‐
ses to refresh or extend them will benefit from being able to immediately rerun the
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prior analysis and then to work within the same language to make their modifica‐
tions. Today, many organizations rely on Excel or some flavor of SQL as common
data manipulation languages and tools.

Another aspect of using a common data manipulation language is the ability to easily
transition exploratory analyses to a production version or systems. Historically, many
organizations have allowed exploratory analyses to be conducted in one set of tools
and languages (Excel, R, Python, SAS, etc.), whereas production versions of these
analyses (for regular reporting or for data-driven services and products) are often
built in a more basic software engineering framework. More effective organizations
have shifted toward tools and languages that support the “productionalization” (or
“operationalization”) of exploratory logic more directly. Most of these newer tools can
simply wrap exploratory scripts in a scheduling and monitoring framework.

One final best practice: consider building a rotation program that allows people to
take on the different roles associated with working with data. Superficially, it will
increase the breadth of skills that your organization can take advantage of. More fun‐
damentally, a rotation program can build empathy and trust across these job roles,
leading to cleaner hand-offs of projects that span multiple groups.

Having now covered a framework for understanding data projects, how data wran‐
gling works and fits into these projects, and how different job roles also work
together in these projects, we turn our attention to data wrangling tools and lan‐
guages. In line with our best practice recommendation around finding a common
language, we’ll cover the two most common wrangling tools and languages today:
Excel and SQL. We’ll also discuss a more recently developed data wrangling tool: Tri‐
facta Wrangler. In Chapter 9, we provide a basic overview of these three tools. In sub‐
sequent chapters, we provide hands-on examples illustrating how they can be used to
perform the variety of transformations and profiling involved in wrangling data.
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CHAPTER 9

Data Wrangling Tools

Tools for data wrangling span a number of dimensions, from general-purpose pro‐
gramming languages, to commodity spreadsheet applications, to visual transforma‐
tion and profiling products. There are easily dozens of tools in each category, but for
the purposes of this book, we’re going to focus on three products that we believe rep‐
resent the different focuses and strengths of each dimension of data wrangling tools:
Excel, SQL, and Trifacta Wrangler. If you’ve worked with data in any capacity, you’re
probably familiar with one or more of these tools.

As we move through this chapter, we will draw distinctions between these three tools
based on their supported data size, required infrastructure, supported data structures,
and transformation paradigms. We want to illuminate the generic use cases for which
each tool fits so that you can understand which one would best suit a particular data
project.

Let’s begin with a brief overview of each tool. The two most commonly used data
wrangling tools are Excel and SQL. Both are more than 30 years old, which attests to
the longevity of data wrangling as a task. Trifacta Wrangler, in contrast, was launched
in 2012 as an outgrowth of academic research at UC Berkeley and Stanford. SQL is
considered a general-purpose tool for data manipulation, and as such, is widely
embedded in many relational database distributions. Excel is a spreadsheet applica‐
tion that allows users to manipulate, analyze, and store data in a tabular format. Tri‐
facta Wrangler is a visual data preparation application with which users can
transform structured and unstructured data and profile the output of those transfor‐
mations using an interactive interface.
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Data Size and Infrastructure
The first two characteristics of data wrangling tools, supported data size and required
infrastructure, are very closely related. After all, you wouldn’t want to use a desktop
application to wrangle terabytes or petabytes of data—imagine how slowly your com‐
puter would run! On the other hand, if your total data size is only a few megabytes,
investing in a big data distributed-processing platform like a Hadoop cluster would
be a massively wasteful use of computing power and budget (and would likely raise
concerns about your spending practices). So generally, smaller data corresponds to
smaller infrastructure needs and bigger data corresponds to bigger infrastructure
needs. There are exceptions to this rule, but those exceptions are beyond the scope of
our discussion in this book.

Table 5-1 compares how our three tools each operate on different data sizes and infra‐
structures. Specifically, Excel is an application designed to run on a personal com‐
puter, whereas SQL is typically deployed on a centralized infrastructure consisting of
one or more networked servers. Due to these infrastructure differences, Excel is pri‐
marily used on small- to medium-sized data (files up to one or two gigabytes),
whereas you can comfortably use SQL on production transaction datasets up to the
multiterabytes range (though some SQL implementations like DB2 can scale to peta‐
bytes). Trifacta Wrangler can support transforming data of various sizes—from meg‐
abytes to petabytes—by running on either a Hadoop cluster or on a single server.
Trifacta Wrangler’s execution environment is determined automatically at runtime
based on data volume and the logical complexity of the transformations.

Table 9-1. General guidelines for the maximum data size supported by each data wrangling
tool, and the infrastructure required to deploy each tool

Tool Maximum data size Infrastructure
Excel MB to GB Desktop
SQL GB to TB Server
Trifacta Wrangler Unlimiteda Clusterb

a Trifacta provides two versions of its data wrangling product, Trifacta Wrangler. We have chosen to highlight the maximum
data size supported by either version of Trifacta Wrangler.
b Trifacta provides two versions of its data wrangling product, Trifacta Wrangler. We have chosen to highlight the
infrastructure required to support the largest possible data that can be transformed using Trifacta Wrangler.

Data Structures
Another important dimension for distinguishing between data wrangling tools is the
range of structures that each data tool can handle. If you remember our discussion
from Chapter 2, the structure of a dataset refers to the format and encoding of
records and fields. Table 9-2 summarizes the differences between the data structures
supported by each tool.
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Table 9-2. General guidelines for the data structures supported by each data wrangling tool

Tool Data structures
Excel Grid
SQL Tabular (uniform records)
Trifacta Wrangler Various

Excel
Excel requires data to be laid out in a grid, though the grid does not need to be rec‐
tangular or completely filled. Often, people include multiple tables in a single Excel
grid, mix descriptive text with data, or embed graphics within their spreadsheets. All
of these data structures roughly conform to the constraints of the grid, but are not
strictly rectangular or consistent. Within each cell of the grid, Excel supports a wide
variety of value types, from numbers and percentages to dates and times. Given the
level of heterogeneity that can be present in an Excel dataset, a single cell, not a
record, is the most important data element in an Excel spreadsheet.

SQL
SQL expects datasets to be constructed as a set of records, in which every record con‐
tains the same set of fields. This means that any dataset that you decide to wrangle
using SQL must be rectangular and must also conform to a specific schema. As with
cells in Excel, the record fields in SQL can have a variety of types. Different versions
of SQL support different field types, but the basic set of dates, times, strings, and
numbers are universal.

Trifacta Wrangler
Trifacta, unlike Excel and SQL, can handle structured, semistructured, and unstruc‐
tured data. When working in Trifacta, data does not need to be explicitly broken
down into rows and columns or fully populated. Like the other two tools, Trifacta
supports a variety of different data types, from the most basic integers, strings, and
Booleans, to more complex custom types like dates, US states, and phone numbers.

Transformation Paradigms
The data structures that each of our tools can handle influence the ways in which
users are able to transform data. We refer to this as the transformation paradigm for a
tool.

How does the tool enable a user to define data transformation steps? Table 9-3 pro‐
vides a comparison.
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Table 9-3. Summary of ways each wrangling tool allows users to define transformation steps

Tool Transformation paradigm
Excel User interface: Script and wizards

Transformation scope: Single values. User writes formulas that apply to single grid cells
SQL User interface: Script only

Transformation scope: Programmatic. User writes a script that applies to multiple records
Trifacta Wrangler User interface: Script, “builder,” and machine-guided transformation creation

Transformation scope: Programmatic. User writes a script that applies to multiple records

Excel
In Excel, the basic unit of transformation is a single grid cell, which is operated on by
formulas. Each cell can be referenced by using a row and column indicator. Rows are
represented by sequential integers, and columns are represented by the Latin alpha‐
bet, starting at “A” and appending multiple letters as needed (“AA” follows “Z”). In
this universe, “A1” is the upper-leftmost cell, “B1” is the adjacent cell to the right, and
“A2” is the adjacent cell to the bottom.

The common output of an Excel formula is a single value, which is inserted into a
single cell. For example, if you wanted to set the value of cell “A11” to contain the sum
of cells A1 through A10, you would directly type your sum formula into cell “A11.”
Your sum will display in the cell, and the formula that produced that sum will be
embedded in the cell itself. Of course, many transformations need to be applied to
more than just one cell. Excel supports this in two ways: first, through updating refer‐
ences in formulas as you copy those formulas from one cell to another; and second,
through array formulas. Array formulas have the added benefit of requiring the entire
array of cells to be modified in a single pass, thus preserving consistency.

From a transformation script perspective, Excel supports authoring a complex series
of calculations that build on one another; however, the steps in the script are embed‐
ded throughout the data. Primarily people build a series of transformation steps by
creating a new column of data for each step. This practice allows you to keep inter‐
mediate steps visible. In some cases, however, people will retain just the final calcula‐
tion values and delete the intermediate steps and the formulas used to generate the
final values. In this case, unless you create external documentation, the dataset itself
does not preserve any lineage or history showing how values were created.

SQL
SQL operates at the level of entire records. Although it is possible to isolate a specific
field within a specific record, more common uses of SQL involve appending or over‐
writing records to an existing dataset, or selecting subsets of records and record fields
for calculations like aggregations. SQL enforces encoding restrictions on record
fields; this means that all of the values in a single field must have the same datatype. A
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column with a datatype “integer” cannot contain fields of string values. Most SQL
systems also require the designation of primary keys for each record, and enforce the
unique occurrence of these keys (i.e., the dataset will contain at most one record with
any specific primary key value). Any complete transformation statement in SQL
requires specifying the record fields involved in the transformations, their output
locations (by name or position within the record), as well as every other field that is
“passing through” (i.e., fields that you want to keep but that do not require transfor‐
mation). In other words, every complete transformation in SQL requires specifying
the entire schema of the dataset.

In SQL, you can write a transformation script as a single long (and often nested)
query or as a series of queries. As already noted, a central difficulty with SQL steps
that build on one another is that they require full specification of the fields that you
want to carry through the calculation. This results in verbose, and in many cases
redundant, information in a SQL transformation script. If the script is written as a
series of queries, storing intermediate results along the way, the user can interrogate
the intermediate values to assess the validity of the transformations (though manag‐
ing these intermediate datasets becomes an additional task, in this case). If the script
is written as a single, long, and nested query, it is difficult for users to create and pro‐
file intermediate results. Doing so requires creating valid variants of the query that
output the intermediary result versus the final.

Trifacta Wrangler
Trifacta Wrangler also operates at the level of record fields and at the level of entire
records. In many cases, data transformations specified in Trifacta Wrangler look like
subsets of SQL query statements. The common subset will specify just the record
fields involved in the transformation as well as how they are combined—fields that
pass through do not need to be specified (whereas in SQL they do). These abbrevia‐
tions result in more readable transformation scripts (relative to SQL). Whole records
can be operated on from the perspective of filtering out records or of aligning the
fields across records from different datasets during enriching transformations like
joins and unions.

Trifacta transformation scripts place all the transformation logic in one place, so
users do not need to click around on cells or blocks of cells to see what logic was
applied. Trifacta transformation scripts also support abbreviation of passed-through
record fields, streamlining their readability, as well as the ability to click back through
script steps to see the state of the dataset at intermediate points.

Of course, profiling is a critical task coupled with specifying data transformations.
Excel supports reviewing of individual cells as well as automated validation of these
cells. Simple distributional checks are supported for numeric blocks of data (e.g.,
sums, averages, minimums, and maximums) but not for strings or more complex val‐
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ues like lists and arrays. Visual profiles of the data (e.g., bar charts and scatterplots)
can be created but are time consuming. In SQL, some modern tools like Periscope
and Looker connect data visualizations directly to SQL queries. However, most SQL
users profile the data by instantiating the dataset (either in intermediary form or as
final result) and then applying simple SQL queries to view and summarize the data.

Trifacta embeds profiling into the core user interface of the product. Two primary
visual charts are available in the product: one illustrates the validity satisfaction of
individual record field values, the other illustrates the distribution of values to give
the user a sense of the “shape” of the data. Furthermore, the charts are interactive,
allowing the user to quickly select subsets of values to create transformations targeted
to that subset.

Choosing a Data Wrangling Tool
So, which data wrangling tool is best? Although we obviously have personal preferen‐
ces, there is really no single correct tool choice. Your choice of data wrangling tool
depends on what you hope to do with your data. We emphasized data volume, infra‐
structure scale, and data structure as key differentiators for data wrangling tools, as
well as elements of your data project that you should consider before selecting a tool.
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rhomboides), so named for the sharp corners of its carapace. It lives in the Atlantic
Ocean along the coasts of Europe and Africa, as well as the Mediterranean Sea. These
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depths of about 325 feet. They are colloquially known as “mud-runners” due to their
evasive maneuvers when found on the beach.

The species’ color varies, including shades of yellow, orange, pink, and red. On aver‐
age, their trapezoidal shells are 1.5 inches wide. The chelipeds (the limbs with a



pincer at the end) are much longer on males than on females: sometimes up to five
times the length of the carapace. Angular crabs have retractable eyestalks.

Crabs are omnivores, feeding primarily on algae, but also mollusks, worms, fungi,
and other crustaceans (depending on what is available). They moult many times as
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